Patents by Inventor Holger Seitz

Holger Seitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867642
    Abstract: The invention relates to an inspection device for masks for semiconductor lithography, comprising an imaging device for imaging a mask, and an image recording device, wherein one or more correction bodies which exhibit a dispersive behavior for at least one subrange of the illumination radiation used for the imaging are arranged in the light path between the mask and the image recording device. The invention furthermore relates to a method for taking account of longitudinal chromatic aberrations in inspection devices for masks, comprising the following steps: recording a specific number of images having differently defocused positions, and selecting a subset of the images and simulating a longitudinal chromatic aberration of a projection exposure apparatus.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 9, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Holger Seitz, Thomas Zeuner, Heiko Feldmann
  • Patent number: 11619882
    Abstract: The invention relates to a method and an apparatus for characterizing a microlithographic mask. In a method according to the invention, structures of a mask intended for use in a lithography process in a microlithographic projection exposure apparatus are illuminated by an illumination optical unit, wherein the mask is imaged onto a detector unit which has a plurality of pixels by an imaging optical unit.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: April 4, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ulrich Matejka, Holger Seitz, Thomas Frank, Asad Rasool
  • Publication number: 20220075272
    Abstract: The invention relates to a method and an apparatus for characterizing a microlithographic mask. In a method according to the invention, structures of a mask intended for use in a lithography process in a microlithographic projection exposure apparatus are illuminated by an illumination optical unit, wherein the mask is imaged onto a detector unit which has a plurality of pixels by an imaging optical unit.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 10, 2022
    Inventors: Ulrich Matejka, Holger Seitz, Thomas Frank, Asad Rasool
  • Publication number: 20210156809
    Abstract: The invention relates to an inspection device for masks for semiconductor lithography, comprising an imaging device for imaging a mask, and an image recording device, wherein one or more correction bodies which exhibit a dispersive behavior for at least one subrange of the illumination radiation used for the imaging are arranged in the light path between the mask and the image recording device. The invention furthermore relates to a method for taking account of longitudinal chromatic aberrations in inspection devices for masks, comprising the following steps: recording a specific number of images having differently defocused positions, and selecting a subset of the images and simulating a longitudinal chromatic aberration of a projection exposure apparatus.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Inventors: Holger Seitz, Thomas Zeuner, Heiko Feldmann
  • Patent number: 10928332
    Abstract: The invention relates to an inspection device for masks for semiconductor lithography, comprising an imaging device for imaging a mask, and an image recording device, wherein one or more correction bodies which exhibit a dispersive behavior for at least one subrange of the illumination radiation used for the imaging are arranged in the light path between the mask and the image recording device. The invention furthermore relates to a method for taking account of longitudinal chromatic aberrations in inspection devices for masks, comprising the following steps: recording a specific number of images having differently defocused positions, and selecting a subset of the images and simulating a longitudinal chromatic aberration of a projection exposure apparatus.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: February 23, 2021
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Holger Seitz, Thomas Zeuner, Heiko Feldmann
  • Patent number: 10788748
    Abstract: The invention relates to a method and an appliance for predicting the imaging result obtained with a mask when a lithography process is carried out, wherein the mask comprises mask structures to be imaged and the mask is destined to be illuminated in a lithography process in a projection exposure apparatus with a predetermined illumination setting for exposing a wafer comprising a photoresist.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 29, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Thomas Thaler, Holger Seitz, Ute Buttgereit, Thomas Trautzsch, Mame Kouna Top-Diallo, Christoph Husemann
  • Patent number: 10698318
    Abstract: The invention relates to a method and a device for characterizing a mask for microlithography. In a method according to the invention, structures of a mask intended for use in a lithography process in a microlithographic projection exposure apparatus are illuminated by an illumination optical unit, wherein the mask is imaged onto a detector unit by an imaging optical unit, wherein image data recorded by the detector unit are evaluated in an evaluation unit. In this case, for emulating an illumination setting predefined for the lithography process in the microlithographic projection exposure apparatus, the imaging of the mask onto the detector unit is carried out in a plurality of individual imagings which differ from one another with regard to the illumination setting set in the illumination optical unit or the polarization-influencing effect set in the imaging optical unit.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 30, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Holger Seitz, Ute Buttgereit, Thomas Thaler, Thomas Frank, Ulrich Matejka, Markus Deguenther, Robert Birkner, Dominik Grau
  • Patent number: 10578881
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 3, 2020
    Assignees: Carl Zeiss AG, Carl Zeiss SMT GmbH
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Patent number: 10539865
    Abstract: A method is provided for determining an OPC model comprising: recording an aerial image by use of a mask inspection microscope, wherein the aerial image comprises at least one segment of a mask; simulating a plurality of aerial images which comprise at least the segment, proceeding from a mask design and from predefined parameters of an optical model which is part of the OPC model, wherein the parameters differ for each of the simulated aerial images of the plurality of aerial images; determining differences between the measured aerial image and the simulated aerial images; determining those parameters for which the differences between simulated aerial image and measured aerial image are the least. In addition, a mask inspection microscope for carrying out the method is provided.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: January 21, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Holger Seitz, Thomas Thaler, Ute Buttgereit, Thomas Trautzsch
  • Publication number: 20190121145
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Publication number: 20190107776
    Abstract: The invention relates to a method and an appliance for predicting the imaging result obtained with a mask when a lithography process is carried out, wherein the mask comprises mask structures to be imaged and the mask is destined to be illuminated in a lithography process in a projection exposure apparatus with a predetermined illumination setting for exposing a wafer comprising a photoresist.
    Type: Application
    Filed: November 21, 2018
    Publication date: April 11, 2019
    Inventors: Thomas Thaler, Holger Seitz, Ute Buttgereit, Thomas Trautzsch, Mame Kouna Top-Dial-Lo, Christoph Husemann
  • Publication number: 20190011839
    Abstract: The invention relates to a method and a device for characterizing a mask for microlithography. In a method according to the invention, structures of a mask intended for use in a lithography process in a microlithographic projection exposure apparatus are illuminated by an illumination optical unit, wherein the mask is imaged onto a detector unit by an imaging optical unit, wherein image data recorded by the detector unit are evaluated in an evaluation unit. In this case, for emulating an illumination setting predefined for the lithography process in the microlithographic projection exposure apparatus, the imaging of the mask onto the detector unit is carried out in a plurality of individual imagings which differ from one another with regard to the illumination setting set in the illumination optical unit or the polarization-influencing effect set in the imaging optical unit.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Inventors: Holger Seitz, Ute Buttgereit, Thomas Thaler, Thomas Frank, Ulrich Matejka, Markus Deguenther, Robert Birkner, Dominik Grau
  • Publication number: 20190011376
    Abstract: The invention relates to an inspection device for masks for semiconductor lithography, comprising an imaging device for imaging a mask, and an image recording device, wherein one or more correction bodies which exhibit a dispersive behavior for at least one subrange of the illumination radiation used for the imaging are arranged in the light path between the mask and the image recording device. The invention furthermore relates to a method for taking account of longitudinal chromatic aberrations in inspection devices for masks, comprising the following steps: recording a specific number of images having differently defocused positions, and selecting a subset of the images and simulating a longitudinal chromatic aberration of a projection exposure apparatus.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Inventors: Holger Seitz, Thomas Zeuner, Heiko Feldmann
  • Patent number: 10168539
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: January 1, 2019
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss AG
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Publication number: 20180173001
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Application
    Filed: February 13, 2018
    Publication date: June 21, 2018
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Publication number: 20180095358
    Abstract: A method is provided for determining an OPC model comprising: recording an aerial image by use of a mask inspection microscope, wherein the aerial image comprises at least one segment of a mask; simulating a plurality of aerial images which comprise at least the segment, proceeding from a mask design and from predefined parameters of an optical model which is part of the OPC model, wherein the parameters differ for each of the simulated aerial images of the plurality of aerial images; determining differences between the measured aerial image and the simulated aerial images; determining those parameters for which the differences between simulated aerial image and measured aerial image are the least. In addition, a mask inspection microscope for carrying out the method is provided.
    Type: Application
    Filed: September 26, 2017
    Publication date: April 5, 2018
    Inventors: Holger Seitz, Thomas Thaler, Ute Buttgereit, Thomas Trautzsch
  • Patent number: 9904060
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: February 27, 2018
    Assignees: Carl Zeiss AG, Carl Zeiss SMT GmbH
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Patent number: 9535244
    Abstract: A method is provided for emulating the imaging of a scanner mask pattern to expose wafers via a mask inspection microscope, in which the mask was corrected by introducing scattering centers. The method includes determining a correlation between the first values of at least one characteristic of aerial images of the mask pattern as produced by a mask inspection microscope and the second values of the at least one characteristic of aerial images of the mask pattern as produced by a scanner, recording a first aerial image of the mask pattern with the mask inspection microscope, determining the first values of the at least one characteristic from the first aerial image, and determining the second values of the at least one characteristic of the first aerial image, using the correlation. A mask inspection microscope is also provided for emulating the imaging of a mask pattern of a scanner to expose wafers, in which the mask was corrected by introducing scattering centers.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: January 3, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Holger Seitz, Thomas Thaler, Ulrich Matejka, Thomas Rademacher
  • Patent number: 9268124
    Abstract: A microscope includes an illumination unit for illuminating a mask at a predetermined non-axial illumination angle, an imaging unit for imaging an aerial image of the mask within a predetermined defocus region, and an imaging field stop, in which as a result of the lateral displacement of the aerial image depending on the position within the defocus region and on the non-axial illumination angle, the opening of the imaging field stop is dimensioned such that the aerial image is either completely encompassed or circumferentially cut within the defocus region. A method for characterizing a mask having a structure includes illuminating the mask at at least one illumination angle using monochromatic illumination radiation such that a diffraction image of the structure is created, recording the diffraction image, establishing the intensities of the maxima of the adjacent orders of diffraction, and establishing an intensity ratio of the intensities.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: February 23, 2016
    Assignees: Carl Zeiss SMS GmbH, Carl Zeiss AG
    Inventors: Holger Seitz, Thomas Frank, Thomas Trautzsch, Norbert Kerwien
  • Patent number: 9222897
    Abstract: A mask inspection microscope is provided for characterizing a mask having a feature. The mask inspection microscope is configured to generate an aerial image of at least one segment of the feature of the mask, acquire a spatially resolved intensity distribution of the aerial image, and determine a total intensity from the intensities of at least one region of the aerial image.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: December 29, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Holger Seitz