Patents by Inventor Holger Specht

Holger Specht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11985740
    Abstract: A method for operating a light emitting diode arrangement with at least one light emitting diode includes the steps of: a) determining at least one instantaneous current-voltage value pair; b) matching the instantaneous current-voltage value pair with an original current-voltage value pair; and c) determining an updated current feed based on the matching and driving the light emitting diode with the updated current feed.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: May 14, 2024
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Michael Binder, Holger Specht, Maximilian Tauer
  • Publication number: 20220256664
    Abstract: A method for operating a light emitting diode arrangement with at least one light emitting diode includes the steps of: a) determining at least one instantaneous current-voltage value pair; b) matching the instantaneous current-voltage value pair with an original current-voltage value pair; and c) determining an updated current feed based on the matching and driving the light emitting diode with the updated current feed.
    Type: Application
    Filed: June 4, 2020
    Publication date: August 11, 2022
    Inventors: Michael BINDER, Holger SPECHT, Maximilian TAUER
  • Patent number: 10867873
    Abstract: A method and a device for measuring a plurality of semiconductor chips in a wafer array are disclosed. In an embodiment a method for measuring the semiconductor chips in a wafer array, wherein the wafer array is arranged on an electrically conductive carrier so that in each case back contacts of the semiconductor chips are contacted by the carrier, wherein a contact structure is arranged on a side of the wafer array facing away from the carrier, and wherein the contact structure includes a contact element and/or a plurality of radiation-emitting measurement semiconductor chips, includes applying a voltage between the contact structure and the carrier and measuring the semiconductor chips depending on a luminous image which is generated by emitted radiation which is caused simultaneously by fluorescence when the semiconductor chips are illuminated or by a radiation-emitting operation of the measurement semiconductor chips when the voltage is applied.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: December 15, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Holger Specht, Roland Zeisel, Anton Vogl, Jens Ebbecke
  • Publication number: 20190189527
    Abstract: A method and a device for measuring a plurality of semiconductor chips in a wafer array are disclosed. In an embodiment a method for measuring the semiconductor chips in a wafer array, wherein the wafer array is arranged on an electrically conductive carrier so that in each case back contacts of the semiconductor chips are contacted by the carrier, wherein a contact structure is arranged on a side of the wafer array facing away from the carrier, and wherein the contact structure includes a contact element and/or a plurality of radiation-emitting measurement semiconductor chips, includes applying a voltage between the contact structure and the carrier and measuring the semiconductor chips depending on a luminous image which is generated by emitted radiation which is caused simultaneously by fluorescence when the semiconductor chips are illuminated or by a radiation-emitting operation of the measurement semiconductor chips when the voltage is applied.
    Type: Application
    Filed: July 25, 2017
    Publication date: June 20, 2019
    Inventors: Holger Specht, Roland Zeisel, Anton Vogl, Jens Ebbecke
  • Patent number: 9683888
    Abstract: The invention relates to a method for measuring a light radiation (300) emitted by a light-emitting diode (210). In the method, an end (121) of an optical fiber (120) which is connected to a measuring device (130) is irradiated with the light radiation (300), which is emitted by the light-emitting diode (210), through an optical device (140), so that a portion of the light radiation (300) is coupled into the optical fiber (120) and is guided to the measuring device (130). The optical device (140) causes the light radiation (300) passing through the optical device (140) to be emitted in diffuse form in the direction of the end (121) of the optical fiber (120). The invention also relates to an apparatus (100) for measuring a light radiation (300) emitted by a light-emitting diode (210).
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: June 20, 2017
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Simeon Katz, Holger Specht, Alexander Linkov, Christopher Koelper
  • Publication number: 20150204718
    Abstract: The invention relates to a method for measuring a light radiation (300) emitted by a light-emitting diode (210). In the method, an end (121) of an optical fibre (120) which is connected to a measuring device (130) is irradiated with the light radiation (300), which is emitted by the light-emitting diode (210), through an optical device (140), so that a portion of the light radiation (300) is coupled into the optical fibre (120) and is guided to the measuring device (130). The optical device (140) causes the light radiation (300) passing through the optical device (140) to be emitted in diffuse form in the direction of the end (121) of the optical fibre (120). The invention also relates to an apparatus (100) for measuring a light radiation (300) emitted by a light-emitting diode (210).
    Type: Application
    Filed: August 22, 2013
    Publication date: July 23, 2015
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Simeon Katz, Holger Specht, Alexander Linkov, Christopher Koelper
  • Publication number: 20040254567
    Abstract: The present invention relates to surgical methods which may include excising a sheet of tissue from surrounding tissue, treating the isolated sheet with focused energy thereby ablating at least one layer of said sheet (or a part thereof) and inserting the treated sheet to the location from which the sheet of tissue was excised or to another location. The invention also includes devices for conducting such methods. The method is particularly useful for the treatment of age-related macular degeneration.
    Type: Application
    Filed: February 12, 2004
    Publication date: December 16, 2004
    Inventors: Frank G. Holz, Florian Schutt, Almut Bindewald, Holger Specht