Patents by Inventor Holger ULLAND
Holger ULLAND has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12378270Abstract: Platinum complex of the type [L1L2Pt[O(CO)R1]X]n, wherein L1 and L2 are the same or different monoolefin ligands or together represent a compound L1L2 acting as a diolefin ligand, wherein X is selected from bromide, chloride, iodide, and —O(CO)R2, wherein —O(CO)R1 and —O(CO)R2 are the same or different C6-C18 or C8-C18 non-aromatic monocarboxylic acid groups with the exception of a phenylacetic acid group, or together represent a C8-C18 non-aromatic dicarboxylic acid group —O(CO)R1R2(CO)O—, wherein it is a mononuclear platinum complex where n=1, or wherein, in the event of the presence of L1L2 and/or of —O(CO)R1R2(CO)O—, it may be a polynuclear platinum complex with a whole number n>1.Type: GrantFiled: July 1, 2020Date of Patent: August 5, 2025Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KGInventors: Robert Sievi, Richard Walter, Holger Rauter, Michael Gock, Holger Ulland
-
Patent number: 11848276Abstract: A method of manufacturing a semiconductor package which is at least in part covered by an electromagnetic interference shielding layer. The method includes at least these steps: i. providing the semiconductor package and an ink composition having at least a compound comprising at least one metal precursor and at least one organic compound; ii. applying at least a part of the ink composition onto the semiconductor package, wherein a precursor layer is formed; and iii. treating the precursor layer with an irradiation of a peak wavelength in the range from 100 nm to 1 mm. Further disclosed is a semiconductor package comprising an electromagnetic interference shielding layer comprising at least one metal, wherein the semiconductor package is obtainable by the aforementioned method. Still further disclosed are a semiconductor package comprising an electromagnetic interference shielding layer having a specific conductance and thickness, and uses of an ink composition.Type: GrantFiled: November 4, 2019Date of Patent: December 19, 2023Assignee: Heraeus Electronics GmbH & Co. KGInventors: Christian Neumann, Kai-Ulrich Boldt, Muriel Thomas, Susanne Behl, Peter Krämer, Holger Ulland
-
Patent number: 11844200Abstract: An electronic module having at least two electronic components mounted on a substrate. The electronic components are covered by a dielectric material. The dielectric material has a recess between adjacent electronic components. The surface of the recess facing at least one electronic component is coated with a conductive layer while the opposite surface to that coated recess surface is substantially free of a conductive layer. Also disclosed is a process for making the above-specified electronic module.Type: GrantFiled: September 24, 2020Date of Patent: December 12, 2023Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KGInventors: Susanne Behl, Holger Ulland, Alan Paul Stadnik
-
Patent number: 11629410Abstract: Preparation containing: (A) 30 to 90% by weight of at least one organic solvent; (B) 10 to 70% by weight of at least one platinum complex of the type [L1L2Pt[O(CO)R1]X]n, wherein L1 and L2 represent the same or different monoolefin ligands, or together represent a compound L1L2 acting as a diolefin ligand, wherein X is selected from bromide, chloride, iodide, and —O(CO)R2, wherein —O(CO)R1 and —O(CO)R2 represent the same or different C6-C18 non-aromatic monocarboxylic acid groups, or together represent a C8-C18 non-aromatic dicarboxylic acid group —O(CO)R1 R2(CO)O—, wherein they are mononuclear platinum complexes with n=1, or wherein, if L1L2 and/or —O(CO)R1 R2(CO)O— are present, they may be polynuclear platinum complexes with a whole number n>1, and (C) 0 to 10% by weight of at least one additive.Type: GrantFiled: July 9, 2020Date of Patent: April 18, 2023Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KGInventors: Robert Sievi, Michael Gock, Richard Walter, Holger Ulland
-
Publication number: 20220364238Abstract: Preparation containing: (A) 30 to 90% by weight of at least one organic solvent; (B) 10 to 70% by weight of at least one platinum complex of the type [L1L2Pt[O(CO)R1]X]n, wherein L1 and L2 represent the same or different monoolefin ligands, or together represent a compound L1L2 acting as a diolefin ligand, wherein X is selected from bromide, chloride, iodide, and —O(CO)R2, wherein —O(CO)R1 and —O(CO)R2 represent the same or different C6-C18 non-aromatic monocarboxylic acid groups, or together represent a C8-C18 non-aromatic dicarboxylic acid group —O(CO)R1 R2(CO)O—, wherein they are mononuclear platinum complexes with n=1, or wherein, if L1L2 and/or —O(CO)R1 R2(CO)O— are present, they may be polynuclear platinum complexes with a whole number n>1, and (C) 0 to 10% by weight of at least one additive.Type: ApplicationFiled: July 9, 2020Publication date: November 17, 2022Inventors: Robert SIEVI, Michael GOCK, Richard WALTER, Holger ULLAND
-
Publication number: 20220340610Abstract: Platinum complex of the type [L1L2Pt[O(CO)R1]X]n, wherein L1 and L2 are the same or different monoolefin ligands or together represent a compound L1L2 acting as a diolefin ligand, wherein X is selected from bromide, chloride, iodide, and —O(CO)R2, wherein —O(CO)R1 and —O(CO)R2 are the same or different C6-C18 or C8-C18 non-aromatic monocarboxylic acid groups with the exception of a phenylacetic acid group, or together represent a C8-C18 non-aromatic dicarboxylic acid group —O(CO)R1R2(CO)O—, wherein it is a mononuclear platinum complex where n=1, or wherein, in the event of the presence of L1L2 and/or of —O(CO)R1R2(CO)O—, it may be a polynuclear platinum complex with a whole number n>1.Type: ApplicationFiled: July 1, 2020Publication date: October 27, 2022Inventors: Robert SIEVI, Richard WALTER, Holger RAUTER, Michael GOCK, Holger ULLAND
-
Publication number: 20210358861Abstract: A method of manufacturing a semiconductor package which is at least in part covered by an electromagnetic interference shielding layer. The method includes at least these steps: i. providing the semiconductor package and an ink composition having at least a compound comprising at least one metal precursor and at least one organic compound; ii. applying at least a part of the ink composition onto the semiconductor package, wherein a precursor layer is formed; and iii. treating the precursor layer with an irradiation of a peak wavelength in the range from 100 nm to 1 mm. Further disclosed is a semiconductor package comprising an electromagnetic interference shielding layer comprising at least one metal, wherein the semiconductor package is obtainable by the aforementioned method. Still further disclosed are a semiconductor package comprising an electromagnetic interference shielding layer having a specific conductance and thickness, and uses of an ink composition.Type: ApplicationFiled: November 4, 2019Publication date: November 18, 2021Inventors: Christian Neumann, Kai-Ulrich Boldt, Thomas Muriel, Susanne Behl, Peter Krämer, Holger Ulland
-
Publication number: 20210136963Abstract: An electronic module having at least two electronic components mounted on a substrate. The electronic components are covered by a dielectric material. The dielectric material has a recess between adjacent electronic components. The surface of the recess facing at least one electronic component is coated with a conductive layer while the opposite surface to that coated recess surface is substantially free of a conductive layer. Also disclosed is a process for making the above-specified electronic module.Type: ApplicationFiled: September 24, 2020Publication date: May 6, 2021Inventors: Susanne BEHL, Holger ULLAND, Alan Paul STADNIK
-
Patent number: 8581089Abstract: A module having a plurality of thermoelectric elements electrically connected in series, each being made of at least one n-layer and at least one p-layer made of thermoelectric material with a pn-transition implemented along a boundary layer. A temperature gradient parallel to the boundary layer between a hot and a cold side of each thermoelectric element can be applied or detected. Resistances of the electrical contacts of the individual thermoelectric elements are reduced and the thermal connection to a heat sink or heat source is improved for generating a temperature gradient along the boundary layer. The substrate and the thermoelectric elements are produced in separate processes, and the thermoelectric elements are adhered to previously structured, thermally and electrically conductive regions of the substrate using different adhesives for the cold and hot side of each thermoelectric element.Type: GrantFiled: June 8, 2010Date of Patent: November 12, 2013Assignee: O-Flexx Technologies GmbHInventors: Ralph Teunissen, Albert Holger Ulland