Patents by Inventor Holly E. Rockweiler

Holly E. Rockweiler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150273218
    Abstract: Systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One illustrative method may include delivering electrical stimulation at a first voltage to each vector in a first set of two or more vectors of a multi-vector medical system, determining whether the delivered electrical stimulation at the first voltage resulted in capture for each of the vectors in the first set of two or more vectors, identifying those vectors of the first set of two or more vectors that were determined to result in capture as a second set of vectors, delivering electrical stimulation at a second voltage that is lower than the first voltage to each vector in the second set of vectors, and determining whether the delivered electrical stimulation at the second voltage resulted in capture for each of the vectors in the second set of vectors.
    Type: Application
    Filed: March 26, 2015
    Publication date: October 1, 2015
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Publication number: 20150190643
    Abstract: An implantable cardiac device includes a sensor for sensing patient activity and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the accelerometer signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Application
    Filed: March 23, 2015
    Publication date: July 9, 2015
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob I. Laughner
  • Publication number: 20150165204
    Abstract: Systems and methods for providing CRT therapy to a patient with an implanted multi-site pacing medical device. In one example, an intrinsic electrical delay associated with each of two or more left ventricle electrodes may be determined. The intrinsic electrical delay associated with each of the two or more left ventricle electrodes may be compared to an electrical delay threshold. If the electrical delay associated with one or fewer left ventricle electrodes is greater than the electrical delay threshold, a single left ventricle electrode may be selected for use during subsequent CRT therapy. If the electrical delay associated with more than one left ventricle electrode is greater than the electrical delay threshold, two or more of the left ventricle electrodes may be selected for use during subsequent CRT therapy.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Yinghong Yu, Keith L. Herrmann, Holly E. Rockweiler, Sunipa Saha, Benjamin J. Nyquist
  • Publication number: 20150165205
    Abstract: Some systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One method may include displaying a plurality of vectors on a display screen wherein each vector represents a different combination of three or more electro-stimulation electrodes, determining an electrical impedance for each of the plurality of vectors, displaying on the display screen the electrical impedance for each of the plurality of vectors, receiving a selection of a set of the plurality of vectors, determining, for each of the vectors in the set of vectors, a capture threshold, displaying on the display screen the capture threshold for each of the vectors in the set of vectors, receiving a selection of a vector from the set of vectors for delivery of electrical stimulation to the patient's heart, and programming the electro-stimulation device electrical stimulation to the patient's heart via the selected vector.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Publication number: 20150165212
    Abstract: Systems and methods for efficiently determining one or more parameters for vectors of a multi-electrode implantable medical device, and for identifying one or more suitable vectors for sensing cardiac electrical data and/or delivering electrical stimulation therapy based on one or more of the determined parameters. Reducing the time required to determine the one or more parameters for each vector can help reduce procedure time for implanting and/or configuring an implantable medical device, which can reduce costs and/or improved patient comfort.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Sunipa Saha, Keith L. Herrmann, Yinghong Yu, David W. Yost, Holly E. Rockweiler
  • Publication number: 20150100103
    Abstract: Methods and device for determining a pacing vector for delivering an electrostimulation therapy are described. An implantable medical device may be configured to determine an anode capture threshold and a cathode capture threshold for a first anode and cathode pair of electrodes, switch a polarity of the first anode and cathode pair of electrodes, and determine an anode capture threshold and a cathode capture threshold for the first anode and cathode pair of electrodes having the switched polarity. The implantable medical device may be further configured to compare a cathodal capture threshold for the anode and cathode pair having the switched polarity to the anodal capture threshold of the first anode and cathode pair of electrodes and select either an anode or a cathode for delivering an electrostimulation therapy based at least in part on the comparison. Other methods and systems are also contemplated and described.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 9, 2015
    Inventors: Holly E. Rockweiler, Shibaji Shome, Arjun D. Sharma, Deepa Mahajan, Sunipa Saha
  • Patent number: 8996108
    Abstract: An implantable cardiac device includes a sensor for sensing patient activity and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the accelerometer signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: March 31, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob I. Laughner
  • Publication number: 20150066102
    Abstract: The disclosure relates to systems and methods for cardiac rhythm management. In some cases, a system may include a pulse generator for generating pacing pulses for stimulating a heart of a patient; a memory; and a sensor configured to sense a response to a unwanted stimulation and to produce a corresponding sensor signal. A processing circuit may receive the sensor signal for a time after one or more pacing pulses, and may derive a time-frequency representation of the sensor signal based on the received sensor signal. The processing circuit may use the time-frequency representation of the sensor signal to help identify unwanted stimulation. Once unwanted stimulation is detected, the processing circuit may change the pacing pulses to help reduce or eliminate the unwanted stimulation.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventors: Holly E. Rockweiler, David C. Olson, Sunipa Saha
  • Publication number: 20150066103
    Abstract: The disclosure relates to systems and methods for cardiac rhythm management. In some cases, a system may include a pulse generator for generating pacing pulses for stimulating a heart of a patient; a memory; and a sensor configured to sense a response to a unwanted stimulation and to produce a corresponding sensor signal. A processing circuit may receive the sensor signal for a time after one or more pacing pulses, and may derive a time-frequency representation of the sensor signal based on the received sensor signal. The processing circuit may use the time-frequency representation of the sensor signal to help identify unwanted stimulation. Once unwanted stimulation is detected, the processing circuit may change the pacing pulses to help reduce or eliminate the unwanted stimulation.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventors: Holly E. Rockweiler, David C. Olson, Sunipa Saha
  • Publication number: 20140100626
    Abstract: An implantable cardiac device includes a sensor for sensing patient activity and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the accelerometer signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 10, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob I. Laughner
  • Patent number: 8634915
    Abstract: An implantable cardiac device includes a sensor for sensing patient activity and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the accelerometer signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: January 21, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob L. Laughner
  • Patent number: 8626292
    Abstract: An implantable cardiac device includes a sensor for sensing patient respiration and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the respiration signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: January 7, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob L. Laughner
  • Publication number: 20100305637
    Abstract: An implantable cardiac device includes a sensor for sensing patient respiration and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the respiration signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob L. Laughner
  • Publication number: 20100305638
    Abstract: The present invention concerns phrenic nerve activation detection algorithms for characterization of phrenic nerve activation and phrenic nerve activation avoidance in cardiac pacing therapy. Various embodiments concern receiving a respiration signal indicative of respiratory activity of the patient, identifying respiratory phases based on the respiration signal, delivering cardiac pacing pulses within each of the identified respiratory phases, receiving a phrenic nerve activation signal indicative of activation of the patient's phrenic nerve, analyzing the phrenic nerve stimulation signal to determine if one or more of the pacing pulses activated the phrenic nerve of the patient, and determining if at least one of the delivered pacing pulses activated the phrenic nerve of the patient based on the phrenic nerve activation signal indicating activation of the patient's phrenic nerve associated with delivery of the at least one cardiac pacing pulse.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob L. Laughner
  • Publication number: 20100305647
    Abstract: An implantable cardiac device includes a sensor for sensing patient activity and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the accelerometer signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob L. Laughner