Patents by Inventor Holly Noelle Moschiano

Holly Noelle Moschiano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8903505
    Abstract: A medical lead system includes at least one bandstop filter for attenuating current flow through the lead across a range of frequencies. The bandstop filter has an overall circuit Q wherein the resultant 3 dB bandwidth is at least 10 kHz. The values of capacitance and inductance of the bandstop filter are selected such that the bandstop filter is resonant at a selected center frequency or range of frequencies. Preferably, the bandstop filter has an overall circuit Q wherein the resultant 10 dB bandwidth is at least 10 kHz. Such bandstop filters are backwards compatible with known implantable deployment systems and extraction systems.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 2, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Warren S. Dabney, Kishore Kumar Kondabatni, Christine A. Frysz, Robert Shawn Johnson, Holly Noelle Moschiano, Barry C. Muffoletto
  • Patent number: 8855785
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire to the energy dissipating surface. In alternate configurations, the switch may be disposed so that it electrically opens the implanted lead or the leadwire when diverting energy to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: October 7, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Publication number: 20140296952
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to account for a shift in its inductance to a second inductive value when shielded.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 2, 2014
    Applicant: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Patent number: 8849403
    Abstract: A lead extending exteriorly from an active implantable medical device (AIMD) is at least partially ensheathed within an electromagnetic interference (EMI) shield. The AIMD has a conductive equipotential surface to which the EMI shield may be conductively coupled. An impeding circuit may be provided for raising the high frequency impedance of the lead. An energy diversion circuit may also be provided for conductively coupling the lead to the EMI shield.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 30, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Robert A. Stevenson, Warren S. Dabney, Holly Noelle Moschiano, Kishore Kumar Kondabatni, Neal Nesselbeck, Joseph Spaulding, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20140288619
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: June 10, 2014
    Publication date: September 25, 2014
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Publication number: 20140240060
    Abstract: A bandstop filter having optimum component values is provided for a lead of an active implantable medical device (AIMD). The bandstop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the implantable lead of the AIMD, wherein values of capacitance and inductance are selected such that the bandstop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the bandstop filter to attenuate current flow through the implantable lead along a range of selected frequencies.
    Type: Application
    Filed: April 8, 2014
    Publication date: August 28, 2014
    Applicant: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Henry R. Halperin
  • Publication number: 20140172059
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 19, 2014
    Applicant: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Patent number: 8751013
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: June 10, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Patent number: 8712544
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: April 29, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Patent number: 8670841
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: March 11, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Publication number: 20130289666
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch disposed between the diversion circuit and the AIMD electronics for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: May 20, 2013
    Publication date: October 31, 2013
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard
  • Publication number: 20130253297
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: May 17, 2013
    Publication date: September 26, 2013
    Applicant: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Publication number: 20130245413
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
    Type: Application
    Filed: April 11, 2013
    Publication date: September 19, 2013
    Applicant: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Patent number: 8509913
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 13, 2013
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo
  • Patent number: 8457760
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: June 4, 2013
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Patent number: 8447414
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch disposed between the diversion circuit and the AIMD electronics for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: May 21, 2013
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard
  • Publication number: 20120253340
    Abstract: A composite RF current attenuator for a medical lead includes a conductor having a distal electrode contactable to biological cells, a bandstop filter in series with the lead conductor for attenuating RF currents flow through the lead conductor at a selected center frequency or across a range of frequencies about the center frequency, and a lowpass filter in series with the bandstop filter and forming a portion of the lead conductor. The bandstop filter has a capacitance in parallel with a first inductance. In a preferred form, the lowpass filter includes a second inductance in series with the bandstop filter, wherein the values of capacitance and inductances for the composite RF current attenuator are selected such that it attenuates MRI-induced RF current flow in an MRI environment.
    Type: Application
    Filed: February 21, 2012
    Publication date: October 4, 2012
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Kishore Kumar Kondabatni, Joseph Spaulding, Dominick J. Frustaci, Warren S. Dabney, Holly Noelle Moschiano
  • Patent number: 8260435
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, and a passive component or network disposed somewhere along the length of the implantable lead. The passive component or network including at least one inductive component having a primary magnetic field line axis. A conductive shield or housing having a primary longitudinal axis substantially surrounds the inductive component or the passive network. The inductive component's magnetic field line axis is oriented substantially orthogonally to the primary longitudinal axis of the conductive shield or housing.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 4, 2012
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Holly Noelle Moschiano, Robert A. Stevenson
  • Patent number: 8224440
    Abstract: A lead body adapted for in-vivo implantation in a living subject includes a proximal end configured for electrical and mechanical connection to a therapy or a monitoring device, and a distal end. A collar is disposed at the distal end of the lead body, and a casing is disposed within the collar and is translatable along a central longitudinal axis of the collar. At least one electrical conductor extends substantially the length of the lead body, and an electronic component is disposed within the casing and conductively coupled to the electrical conductor. An electrode is mechanically connected to the casing and conductively coupled to the electronic component. A seal is disposed between the casing assembly and the collar to prevent passage of ionic fluid into the lead body through its distal end.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: July 17, 2012
    Assignee: Greatbatch Ltd.
    Inventors: Ryan Thomas Bauer, Scott Brainard, Lawrence M. Kane, Warren S. Dabney, Robert Shawn Johnson, Robert A. Stevenson, Holly Noelle Moschiano
  • Patent number: 8200342
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 12, 2012
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo