Patents by Inventor Homayoon Kazerooni

Homayoon Kazerooni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10369690
    Abstract: An arm supporting exoskeleton comprises a shoulder base coupled to an arm link mechanism. The arm link mechanism comprises a proximal link and a distal link configured to rotate relative to each other about a rotating joint; at least one arm-coupler adapted to couple a user's arm to the distal link; a tensile force generator coupled to the proximal link and the distal link, and providing a torque to flex the distal link relative to the proximal link; and a protrusion located substantially at the rotating joint. When the distal link extends past a toggle angle, the protrusion constrains the tensile force generator, and the torque provided by the tensile force generator remains substantially small. When the protrusion does not constrain the tensile force generator, the torque tends to flex the distal link relative to the proximal link, thereby reducing human shoulder forces and torques required to raise the arm.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 6, 2019
    Assignee: The Regents of the University of California
    Inventors: Logan Van Engelhoven, Homayoon Kazerooni
  • Publication number: 20190231574
    Abstract: An exoskeleton includes two torque generators, thigh links, and a supporting trunk rotatably coupled to the thigh links. When a wearer bends forward in the sagittal plane such that the supporting trunk extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators imposes a resisting torque between the supporting trunk and a corresponding thigh link, thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton may include an active or passive means for actuating the torque generators. When the supporting trunk does not extend beyond the predetermined angle A, the torque generators do not impose resisting torques between the supporting trunk and thigh links during the entire range of motion of the thigh links, thus enabling a wearer to walk, run, and sit without constraint while in a substantially upright position.
    Type: Application
    Filed: April 4, 2019
    Publication date: August 1, 2019
    Applicants: U.S. Bionics, Inc., The Regents of the University of California
    Inventors: Homayoon Kazerooni, Wayne Tung, Michael McKinley, Yoon Jung Jeong
  • Patent number: 10357392
    Abstract: An exoskeleton (100) includes two torque generators (116, 118), two thigh links (104,106), and a supporting trunk (112) rotatably coupled to the thigh links (104, 106). When a wearer bends forward in the sagittal plane such that the supporting trunk (112) extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators (116, 118) imposes a resisting torque between the supporting trunk (112) and a corresponding thigh link (104, 106), thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton (100) may include an active or passive means (116, 134) for actuating the torque generators (116, 118).
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: July 23, 2019
    Assignees: The Regents of the University of California, U.S. Bionics, Inc.
    Inventors: Homayoon Kazerooni, Wayne Tung, Michael McKinley, Yoon Jung Jeong
  • Publication number: 20190216630
    Abstract: A trunk supporting exoskeleton comprises: a supporting trunk; thigh links configured to move in unison with a wearer's thighs; and first and second torque generators located on both left and right halves of the wearer substantially close to the wearer's hip. The torque generators couple the supporting trunk to the thigh links, and generate torque between the thigh links and the supporting trunk. When the wearer bends forward such that a predetermined portion of the supporting trunk passes beyond a predetermined angle from vertical, a torque generator(s) imposes a resisting torque between the supporting trunk and the thigh link(s), causing the supporting trunk to impose a force against the wearer's trunk, and the thigh link(s) to impose a force onto the wearer's thigh. When the predetermined portion does not pass beyond the predetermined angle, the torque generators impose no resisting torques between said supporting trunk and respective thigh links.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Applicant: The Regents of the University of California
    Inventors: Theerapat Yangyuenthanasan, Wayne Tung, Homayoon Kazerooni
  • Publication number: 20190151183
    Abstract: A coupling device couples a walker to a torso orthosis which is coupled to a person. The coupling device includes an orthosis coupling member coupled to said torso orthosis, a walker coupling member coupled to said walker, and a mechanism coupled to the orthosis coupling member from its first end and to the walker coupling member from its second end. The mechanism constrains said orthosis coupling member to move along a free line. The torso orthosis is worn by the person and said coupling device is coupled to both said walker and said torso orthosis. The person may be walking along a moving direction not parallel with said free line. The mechanism forces said walker and torso orthosis to move along said moving direction and allows said torso orthosis to move freely along said free line when said moving direction is not parallel with said free line.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 23, 2019
    Applicant: The Regents of the University of California
    Inventors: Homayoon Kazerooni, Katherine Marie Fearing, Wayne Yi-wey Tung
  • Publication number: 20190142683
    Abstract: A fall prevention device configured to be coupled to a person and comprising a mechanical torso configured to be coupled to the person's torso and a mechanical structure configurable to be coupled to the mechanical torso from its first end. The mechanical structure and mechanical torso resist forces at least along one direction to maintain their posture relative to each other. In operation the second end of the mechanical structure is positioned behind the person and substantially close to the ground. When the second end of the mechanical structure contacts the ground, contact points of legs of the person on the ground and contact points of the second end of the mechanical structure outline a multi-sided polygon on the ground. If the vertical projection of the center of gravity of the person to the ground intersects the ground within the multi-sided polygon, the person and fall prevention device remain stable.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 16, 2019
    Applicant: The Regents of the University of California
    Inventors: Homayoon Kazerooni, Mimi Parker, Lace Co Ting Keh
  • Publication number: 20190142682
    Abstract: A trunk supporting exoskeleton comprises: a supporting trunk; thigh links configured to move in unison with a wearer's thighs; and first and second torque generators located on both left and right halves of the wearer substantially close to the wearer's hip. The torque generators couple the supporting trunk to the thigh links, and generate torque between the thigh links and the supporting trunk. When the wearer bends forward such that a predetermined portion of the supporting trunk passes beyond a predetermined angle from vertical, a torque generator(s) imposes a resisting torque between the supporting trunk and the thigh link(s), causing the supporting trunk to impose a force against the wearer's trunk, and the thigh link(s) to impose a force onto the wearer's thigh. When the predetermined portion does not pass beyond the predetermined angle, the torque generators impose no resisting torques between said supporting trunk and respective thigh links.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Applicant: The Regents of the University of California
    Inventors: Wayne Yi-Wey Tung, Nathan Poon, Theerapat Yangyuenthanasan, Homayoon Kazerooni
  • Publication number: 20190143503
    Abstract: Described herein is an arm supporting exoskeleton, comprising an arm link mechanism. The arm link mechanism comprises a proximal link, a distal link, an arm coupler, and a variable force generator. The distal link is rotatable relative to the proximal link. The arm coupler is adapted to couple an upper arm of a person to the distal link. The variable force generator comprises a first spring and a second spring, configured to create a torque between the proximal link and the distal link. In the first force mode, the variable force generator exhibits a first stiffness rate defined by the first spring that supports the upper arm of the person against gravity forces and. In the second force mode, the variable force generator exhibits a second stiffness rate defined by the first spring and the second spring that supports the upper arm of the person against the gravity forces.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Applicant: The Regents of the University of California
    Inventors: Logan Van Engelhoven, Homayoon Kazerooni
  • Patent number: 10285843
    Abstract: A trunk supporting exoskeleton comprises: a supporting trunk; thigh links configured to move in unison with a wearer's thighs; and first and second torque generators located on both left and right halves of the wearer substantially close to the wearer's hip. The torque generators couple the supporting trunk to the thigh links, and generate torque between the thigh links and the supporting trunk. When the wearer bends forward such that a predetermined portion of the supporting trunk passes beyond a predetermined angle from vertical, a torque generator(s) imposes a resisting torque between the supporting trunk and the thigh link(s), causing the supporting trunk to impose a force against the wearer's trunk, and the thigh link(s) to impose a force onto the wearer's thigh. When the predetermined portion does not pass beyond the predetermined angle, the torque generators impose no resisting torques between said supporting trunk and respective thigh links.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: May 14, 2019
    Assignee: The Regents of the University of California
    Inventors: Theerapat Yangyuenthanasan, Wayne Tung, Homayoon Kazerooni
  • Publication number: 20190105190
    Abstract: An artificial knee is configured to be worn by a person. Artificial knees include a thigh link configured to move in unison with a thigh of the person, and a shank link configured to be coupled to the thigh link. Artificial knees include a compression spring coupled to the thigh link at a first end of the compression spring, the compression spring configured to be coupled to the shank link at a second end of the compression spring. The compression spring is configured to provide an extension torque between the thigh link and the shank link during a first range of motion of the thigh link and the shank link relative to each other. The compression spring is configured to provide a flexion torque between the thigh link and the shank link during a second range of motion of the thigh link and the shank link relative to each other.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 11, 2019
    Applicant: The Regents of the University of California
    Inventors: Shangli WU, Homayoon Kazerooni
  • Publication number: 20190039234
    Abstract: An arm supporting exoskeleton comprises a shoulder base coupled to an arm link mechanism. The arm link mechanism comprises a proximal link and a distal link configured to rotate relative to each other about a rotating joint; at least one arm-coupler adapted to couple a user's arm to the distal link; a tensile force generator coupled to the proximal link and the distal link, and providing a torque to flex the distal link relative to the proximal link; and a protrusion located substantially at the rotating joint. When the distal link extends past a toggle angle, the protrusion constrains the tensile force generator, and the torque provided by the tensile force generator remains substantially small. When the protrusion does not constrain the tensile force generator, the torque tends to flex the distal link relative to the proximal link, thereby reducing human shoulder forces and torques required to raise the arm.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Applicant: The Regents of the University of California
    Inventors: Logan Van Engelhoven, Homayoon Kazerooni
  • Patent number: 10124485
    Abstract: An arm supporting exoskeleton comprises a shoulder base coupled to an arm link mechanism. The arm link mechanism comprises a proximal link and a distal link configured to rotate relative to each other about a rotating joint; at least one arm-coupler adapted to couple a user's arm to the distal link; a tensile force generator coupled to the proximal link and the distal link, and providing a torque to flex the distal link relative to the proximal link; and a protrusion located substantially at the rotating joint. When the distal link extends past a toggle angle, the protrusion constrains the tensile force generator, and the torque provided by the tensile force generator remains substantially small. When the protrusion does not constrain the tensile force generator, the torque tends to flex the distal link relative to the proximal link, thereby reducing human shoulder forces and torques required to raise the arm.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: November 13, 2018
    Assignee: The Regents of the University of California
    Inventors: Logan Van Engelhoven, Homayoon Kazerooni
  • Publication number: 20180318164
    Abstract: A wearable apparatus comprises a passive artificial knee that comprises first and second links coupled at a knee joint, a passive compressive force generator coupled to the second link, and a release mechanism coupled to the first link. When an angle of the first and second links is less than a toggle angle, the release mechanism locks in a first operational mode, and the force generator compresses, resisting flexing of the second link. When the angle is larger than the toggle angle, the force generator decompresses and encourages flexion of said second link. When the force generator is extended and said compressive force is small, the release mechanism moves into a second operational mode, wherein the force generator neither resists nor encourages extension and flexion of said second link from said first link. The wearable apparatus comprises an exoskeleton trunk configured to couple to an upper body of a user.
    Type: Application
    Filed: July 3, 2018
    Publication date: November 8, 2018
    Applicant: The Regents of the University of California
    Inventors: Shang-Li Wu, Homayoon Kazerooni
  • Patent number: 10071477
    Abstract: An arm supporting exoskeleton comprises a shoulder base coupled to an arm link mechanism. The arm link mechanism comprises a proximal link and a distal link configured to rotate relative to each other about a rotating joint; at least one arm-coupler adapted to couple a user's arm to the distal link; a tensile force generator coupled to the proximal link and the distal link, and providing a torque to flex the distal link relative to the proximal link; and a protrusion located substantially at the rotating joint. When the distal link extends past a toggle angle, the protrusion constrains the tensile force generator, and the torque provided by the tensile force generator remains substantially small, When the protrusion does not constrain the tensile force generator, the torque tends to flex the distal link relative to the proximal link, thereby reducing human shoulder forces and torques required to raise the arm.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 11, 2018
    Assignee: The Regents of the University of California
    Inventors: Logan Van Engelhoven, Homayoon Kazerooni
  • Publication number: 20180250187
    Abstract: A leg support exoskeleton is strapped on as wearable device to support its user during squatting. The exoskeleton includes a knee joint connected to a first line and a second link, which is configured to allow flexion and extension motion between the first link and the second link. A force generator has a first end that is rotatably connected to the first link. A constraining mechanism is connected to the second link and has at least two operational positions. In a first operational position, the second end of the force generator engages the constraining mechanism, where the first link and the second link flex relative to each other. In a second operational position, the second end of the force generator does not engage the constraining mechanism; the first link and the second link are free to flex and extend relative to each other.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 6, 2018
    Applicant: U.S. Bionics, Inc.
    Inventors: Wayne Tung, Menerva Pillai, Homayoon Kazerooni
  • Publication number: 20180243120
    Abstract: Systems, methods, and apparatus provide an artificial knee. Such artificial knees may include a thigh link configured to move in unison with a thigh of the person, a shank link configured to be rotatably coupled to the thigh link, and a compression spring rotatably coupled to the thigh link at a first end and coupled to the shank link at a second end. The compression spring is configured to provide an extension torque between the thigh link and the shank link during a first range of motion of the thigh link and the shank link relative to each other. The compression spring is configured to provide a flexion torque between the thigh link and the shank link during a second range of motion of the thigh link and the shank link relative to each other.
    Type: Application
    Filed: February 15, 2018
    Publication date: August 30, 2018
    Applicant: The Regents of the University of California
    Inventors: Shang-Li Wu, Homayoon Kazerooni
  • Patent number: 10039685
    Abstract: A passive artificial knee comprises first and second links rotatably coupled at a knee joint, a passive compressive force generator rotatably coupled to the second link, and a release mechanism coupled to the first link. When a relative angle of the first and second links is less than a toggle angle, the release mechanism locks in a first operational mode, and the force generator compresses, resisting the flexing of the second link relative to the first link. When the relative angle is larger than the toggle angle, the force generator decompresses and encourages the flexion of said second link relative to said first link. When the force generator is substantially extended and said compressive force is substantially small, the release mechanism moves into a second operational mode, wherein the force generator neither resists nor encourages the extension and flexion of said second link from said first link.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: August 7, 2018
    Assignee: The Regents of the University of California
    Inventors: Shang-Li Wu, Homayoon Kazerooni
  • Publication number: 20180200135
    Abstract: A leg support exoskeleton is strapped on as a wearable device to support its user during squatting and/or lunging. The exoskeleton includes a knee joint connected to a first link and a second link, which is configured to allow flexion and extension motion between the first link and the second link. A force generator has a first end that is rotatable connected to the first link. A constraining mechanism is connected to the second link and has at least two operational positions. In a first operational position, the second end of the force generator engages the constraining mechanism, where the first link and the second link flex relative to each other. In a second operational position, the second end of the force generator does not engage the constraining mechanism; the first link and the second link are free to flex and extend relative to each other.
    Type: Application
    Filed: November 14, 2017
    Publication date: July 19, 2018
    Applicant: The Regents of the University of California
    Inventors: Wayne Tung, Minerva V. Pillai, James Hatch, Homayoon Kazerooni, Theerapat Yangyuenthanasan, Yusuke Maruo, David Cuban
  • Patent number: 9987151
    Abstract: A manual apparatus of the present invention enables quick connection and disconnection of an exoskeleton leg from a remaining body of an exoskeleton. The apparatus comprises a cavity defined by a housing coupled to the remaining body of the exoskeleton; a latch coupled to the remaining body of the exoskeleton, the latch comprising a latching feature; a clip body including a projection element extending from an end thereof, the clip body coupled to the exoskeleton leg; a handle rotatably coupled to a clip base on the clip body; and a hook rotatably coupled to the handle. When the hook is engaged with the latching feature and the handle rotated from a first unlatched position to a second latched position, the projection element moves inside the cavity.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 5, 2018
    Assignee: The Regents of the University of California
    Inventors: Nicholas Errico, Homayoon Kazerooni, Yoon Jung Jeong
  • Patent number: 9980873
    Abstract: A leg support exoskeleton is strapped on as wearable device to support its user during squatting. The exoskeleton includes a knee joint connected to a first line and a second link, which is configured to allow flexion and extension motion between the first link and the second link. A force generator has a first end that is rotatably connected to the first link. A constraining mechanism is connected to the second link and has at least two operational positions. In a first operational position, the second end of the force generator engages the constraining mechanism, where the first link and the second link flex relative to each other. In a second operational position, the second end of the force generator does not engage the constraining mechanism; the first link and the second link are free to flex and extend relative to each other.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: May 29, 2018
    Assignee: U.S. Bionics, Inc.
    Inventors: Wayne Tung, Minerva Pillai, Homayoon Kazerooni