Patents by Inventor Homer Antoniadis

Homer Antoniadis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230155075
    Abstract: A light emitting device includes a first optical cavity bounded by cavity walls, a first light emitting diode located in the first optical cavity and configured to emit blue or ultraviolet radiation first incident photons, a first color conversion material located over the first light emitting diode and configured to absorb the first incident photons emitted by the light emitting diode and to generate first converted photons having a longer peak wavelength than a peak wavelength of the first incident photons, and a first color selector located over the first color conversion material and configured to absorb or reflect the first incident photons and to transmit the first converted photons.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 18, 2023
    Inventors: Jason HARTLOVE, Saket CHADDA, Ernest C. LEE, Brian KIM, Homer ANTONIADIS, Ravisubhash TANGIRALA, David OLMEIJER
  • Publication number: 20230155079
    Abstract: A light emitting device includes a light emitting diode configured to emit blue or ultraviolet radiation incident photons, a color conversion material located over the light emitting diode and configured to absorb the incident photons emitted by the light emitting diode and to generate converted photons having a longer peak wavelength than a peak wavelength of the incident photons, and at least one light extracting feature located between the light emitting diode and the color conversion material.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 18, 2023
    Inventors: Brian KIM, Homer ANTONIADIS
  • Patent number: 8330348
    Abstract: An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: December 11, 2012
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Dirk Berben, Homer Antoniadis, Frank Jermann, Benjamin Claus Krummacher, Norwin Von Malm, Martin Zachau
  • Patent number: 8288176
    Abstract: The disclosure relates to a method of aligning a set of patterns on a substrate, which includes depositing on the substrate's surface a set of silicon nanoparticles, which includes a set of ligand molecules including a set of carbon atoms. The method involves forming a first set of regions where the nanoparticles are deposited, while the remaining portions of the substrate surface define a second set of regions. The method also includes densifying the set of nanoparticles into a thin film to form a set of silicon-organic zones on the substrate's surface, wherein the first and the second set of regions have respectively first and second reflectivity values, such that the ratio of the second reflectivity value to the first reflectivity value is greater than about 1.1.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 16, 2012
    Assignee: Innovalight, Inc.
    Inventors: Andreas Meisel, Michael Burrows, Homer Antoniadis
  • Publication number: 20120083054
    Abstract: The disclosure relates to a method of aligning a set of patterns on a substrate, which includes depositing on the substrate's surface a set of silicon nanoparticles, which includes a set of ligand molecules including a set of carbon atoms. The method involves forming a first set of regions where the nanoparticles are deposited, while the remaining portions of the substrate surface define a second set of regions. The method also includes densifying the set of nanoparticles into a thin film to form a set of silicon-organic zones on the substrate's surface, wherein the first and the second set of regions have respectively first and second reflectivity values, such that the ratio of the second reflectivity value to the first reflectivity value is greater than about 1.1.
    Type: Application
    Filed: September 22, 2011
    Publication date: April 5, 2012
    Inventors: Andreas Meisel, Michael Burrows, Homer Antoniadis
  • Patent number: 8048814
    Abstract: A method of aligning a set of patterns on a substrate, the substrate including a substrate surface, is disclosed. The method includes depositing a set of silicon nanoparticles on the substrate surface, the set of nanoparticles including a set of ligand molecules including a set of carbon atoms, wherein a first set of regions is formed where the silicon nanoparticles are deposited and the remaining portions of the substrate surface define a second set of regions. The method also includes densifying the set of silicon nanoparticles into a thin film wherein a set of silicon-organic zones are formed on the substrate surface, wherein the first set of regions has a first reflectivity value and the second set of regions has a second reflectivity value. The method further includes illuminating the substrate surface with an illumination source, wherein the ratio of the second reflectivity value to the first reflectivity value is greater than about 1.1.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: November 1, 2011
    Assignee: Innovalight, Inc.
    Inventors: Andreas Meisel, Michael Burrows, Homer Antoniadis
  • Publication number: 20110091731
    Abstract: Native Group IV semiconductor thin films formed from coating substrates using formulations of Group IV nanoparticles are described. Such native Group IV semiconductor thin films leverage the vast historical knowledge of Group IV semiconductor materials and at the same time exploit the advantages of Group IV semiconductor nanoparticles for producing novel thin films which may be readily integrated into a number of devices.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 21, 2011
    Inventors: Maxim Kelman, Pingrong Yu, Manikandan Jayaraman, Dmitry Poplavskyy, David Jurbergs, Francesco Lemmi, Homer Antoniadis
  • Patent number: 7923368
    Abstract: A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: April 12, 2011
    Assignee: Innovalight, Inc.
    Inventors: Mason Terry, Homer Antoniadis, Dmitry Poplavskyy, Maxim Kelman
  • Publication number: 20110079768
    Abstract: The present invention provides photoactive materials that include quantum-confined semiconductor nanostructures in combination with non-quantum confined and bulk semiconductor structures to enhance or create a type II band offset structure. The photoactive materials are well-suited for use as the photoactive layer in photoactive devices, including photovoltaic devices, photoconductors and photodetectors.
    Type: Application
    Filed: December 10, 2010
    Publication date: April 7, 2011
    Inventors: Dmytro Poplavskyy, Sanjai Sinha, David Jurbergs, Homer Antoniadis
  • Publication number: 20110003466
    Abstract: A method of forming a multi-doped junction on a substrate is disclosed. The method includes providing the substrate doped with boron atoms, the substrate comprising a front crystalline substrate surface; and forming a mask on the front crystalline substrate surface, the mask comprising exposed mask areas and non-exposed mask areas. The method also includes exposing the mask to an etchant, wherein porous silicon is formed on the front crystalline substrate surface defined by the exposed mask areas; and removing the mask. The method further includes exposing the substrate to a dopant source in a diffusion furnace with a deposition ambient, the deposition ambient comprising POCl3 gas, at a first temperature and for a first time period, wherein a PSG layer is formed on the front substrate surface; and heating the substrate in a drive-in ambient to a second temperature and for a second time period.
    Type: Application
    Filed: June 4, 2010
    Publication date: January 6, 2011
    Inventors: Giuseppe Scardera, Homer Antoniadis, Nick Cravalho, Maxim Kelman, Elena Rogojina, Karel Vanheusden
  • Patent number: 7834546
    Abstract: An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 16, 2010
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Benjamin Claus Krummacher, Homer Antoniadis
  • Patent number: 7776724
    Abstract: A method of forming a densified nanoparticle thin film is disclosed. The method includes positioning a substrate in a first chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed; and positioning the substrate in a second chamber, the second chamber having a pressure of between about 1×10?7 Torr and about 1×10?4 Torr. The method further includes depositing on the porous compact a dielectric material; wherein the densified nanoparticle thin film is formed.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: August 17, 2010
    Assignee: Innovalight, Inc.
    Inventors: Francesco Lemmi, Elena V. Rogojina, Pingrong Yu, David Jurbergs, Homer Antoniadis, Maxim Kelman
  • Publication number: 20100136718
    Abstract: A method of aligning a set of patterns on a substrate, the substrate including a substrate surface, is disclosed. The method includes depositing a set of silicon nanoparticles on the substrate surface, the set of nanoparticles including a set of ligand molecules including a set of carbon atoms, wherein a first set of regions is formed where the silicon nanoparticles are deposited and the remaining portions of the substrate surface define a second set of regions. The method also includes densifying the set of silicon nanoparticles into a thin film wherein a set of silicon-organic zones are formed on the substrate surface, wherein the first set of regions has a first reflectivity value and the second set of regions has a second reflectivity value. The method further includes illuminating the substrate surface with an illumination source, wherein the ratio of the second reflectivity value to the first reflectivity value is greater than about 1.1.
    Type: Application
    Filed: May 19, 2009
    Publication date: June 3, 2010
    Inventors: Andreas Meisel, Michael Burrows, Homer Antoniadis
  • Patent number: 7626332
    Abstract: An electroluminescent device utilizes a plurality of embodiments to minimize the variation in luminance due to changes in the voltage across the device. These include a highly conductive hole injection layer in a bi-layer device, a thick hoe transporting interlayer in a tri-layer device and the addition of an external resistor in series with the device.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: December 1, 2009
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Wencheng Su, Homer Antoniadis, Franky So
  • Publication number: 20090269913
    Abstract: A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Mason Terry, Homer Antoniadis, Dmitry Poplavskyy, Maxim Kelman
  • Patent number: 7521340
    Abstract: A method of forming a densified nanoparticle thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes exposing the porous compact to an HF vapor for a second time period of between about 2 minutes and about 20 minutes, and heating the porous compact for a second temperature of between about 25° C. and about 60° C.; and heating the porous compact to a third temperature between about 100° C. and about 1000° C., and for a third time period of between about 5 minutes and about 10 hours; wherein the densified nanoparticle thin film is formed.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: April 21, 2009
    Assignee: Innovalight, Inc.
    Inventors: Francesco Lemmi, Elena V. Rogojina, Pingrong Yu, David Jurbergs, Homer Antoniadis, Maxim Kelman
  • Patent number: 7489074
    Abstract: In an embodiment of the invention, a microcavity OLED device that minimizes or eliminates color change at different viewing angles is fabricated. The OLED device can be, for example, an OLED display or an OLED light source used for area illumination. This OLED device includes a multi-layer mirror on a substrate, and each of the layers are comprised of a non-absorbing material. The OLED device also includes a first electrode on the multi-layered first mirror, and the first electrode is substantially transparent. An emissive layer is on the first electrode. A second electrode is on the emissive layer, and the second electrode is substantially reflective and functions as a mirror. The multi-layer mirror and the second electrode form a microcavity. On a front surface of the substrate is a light modulation thin film.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: February 10, 2009
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Homer Antoniadis, Fabian Doerfel
  • Publication number: 20080305619
    Abstract: A method forming a Group IV semiconductor junction on a substrate is disclosed. The method includes depositing a first set Group IV semiconductor nanoparticles on the substrate. The method also includes applying a first laser at a first laser wavelength, a first fluence, a first pulse duration, a first number of repetitions, and a first repetition rate to the first set Group IV semiconductor nanoparticles to form a first densified film with a first thickness, wherein the first laser wavelength and the first fluence are selected to limit a first depth profile of the first laser to the first thickness. The method further includes depositing a second set Group IV semiconductor nanoparticles on the first densified film.
    Type: Application
    Filed: May 2, 2008
    Publication date: December 11, 2008
    Inventors: Francesco Lemmi, Andreas Meisel, Homer Antoniadis
  • Publication number: 20080284313
    Abstract: An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 20, 2008
    Inventors: Dirk Berben, Homer Antoniadis, Frank Jermann, Benjamin Claus Krummacher, Norwin Von Malm, Martin Zachau
  • Publication number: 20080230782
    Abstract: A device for generating a plurality of electron-hole pairs from a photon is disclosed. The device includes a substrate, a first electrode formed above the substrate, and a first doped Group IV nanoparticle thin film deposited on the first electrode. The device further includes an intrinsic layer deposited on the first doped Group IV nanoparticle thin film, wherein the intrinsic layer includes a matrix material with a melting temperature T1, wherein T1 is greater than about 300° C., and a set of quantum confined nanoparticles each with a melting temperature T2, wherein T2 is less than about 900° C., wherein the melting temperature T1 is less than the melting temperature T2.
    Type: Application
    Filed: September 19, 2007
    Publication date: September 25, 2008
    Inventors: Homer Antoniadis, Pingrong Yu