Patents by Inventor Hon-Way Lin
Hon-Way Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150340553Abstract: A photonic device includes: a first-type III-V group layer; a second-type III-V group layer formed on the first-type III-V group layer; and a multi-quantum well layer disposed between the first-type III-V group layer and the second-type III-V group layer; wherein: the multi-quantum well layer comprises a plurality of active layers interleaved with a plurality of barrier layers such that each barrier layer is separated from adjacent barrier layers by a respective one of the active layer; a material of each barrier layer comprises semiconductor compound devoid of Al element; the barrier layers comprises a first group layers between the first-type III-V group layer and the second-type III-V group layer and a second group layers between the second-type III-V group layer and the first group layers, and a thickness of each barrier layer of the first group layers is greater than that of each barrier layer of the second group layers; and the barrier layers of the first group layers comprise uniform thickness.Type: ApplicationFiled: August 4, 2015Publication date: November 26, 2015Inventors: Zhen-Yu Li, Hon-Way Lin, Chung-Pao Lin, Hsing-Kuo Hsia, Hao-Chung Kuo
-
Patent number: 9099593Abstract: The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.Type: GrantFiled: September 14, 2012Date of Patent: August 4, 2015Assignee: TSMC Solid State Lighting Ltd.Inventors: Zhen-Yu Li, Hon-Way Lin, Chung-Pao Lin, Hsing-Kuo Hsia, Hao-Chung Kuo
-
Publication number: 20150055671Abstract: The present disclosure involves a light-emitting device. The light-emitting device includes an n-doped gallium nitride (n-GaN) layer located over a substrate. A multiple quantum well (MQW) layer is located over the n-GaN layer. An electron-blocking layer is located over the MQW layer. A p-doped gallium nitride (p-GaN) layer is located over the electron-blocking layer. The light-emitting device includes a hole injection layer. In some embodiments, the hole injection layer includes a p-doped indium gallium nitride (p-InGaN) layer that is located in one of the three following locations: between the MQW layer and the electron-blocking layer; between the electron-blocking layer and the p-GaN layer; and inside the p-GaN layer.Type: ApplicationFiled: November 5, 2014Publication date: February 26, 2015Inventors: Zhen-Yu Li, Tzu-Te Yang, Hon-Way Lin, Chung-Pao Lin, Kuan-Chun Chen, Ching-Yu Chen, You-Da Lin, Hao-Chung Kuo
-
Publication number: 20140077153Abstract: The present disclosure involves a light-emitting device. The light-emitting device includes an n-doped gallium nitride (n-GaN) layer located over a substrate. A multiple quantum well (MQW) layer is located over the n-GaN layer. An electron-blocking layer is located over the MQW layer. A p-doped gallium nitride (p-GaN) layer is located over the electron-blocking layer. The light-emitting device includes a hole injection layer. In some embodiments, the hole injection layer includes a p-doped indium gallium nitride (p-InGaN) layer that is located in one of the three following locations: between the MQW layer and the electron-blocking layer; between the electron-blocking layer and the p-GaN layer; and inside the p-GaN layer.Type: ApplicationFiled: September 14, 2012Publication date: March 20, 2014Applicant: TSMC Solid State Lighting Ltd.Inventors: Zhen-Yu Li, Tzu-Te Yang, Hon-Way Lin, Chung-Pao Lin, Kuan-Chun Chen, Ching-Yu Chen, You-Da Lin, Hao-Chung Kuo
-
Publication number: 20140077152Abstract: The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.Type: ApplicationFiled: September 14, 2012Publication date: March 20, 2014Applicant: TSMC Solid State Lighting Ltd.Inventors: Zhen-Yu Li, Hon-Way Lin, Chung-Pao Lin, Hsing-Kuo Hsia, Hao-Chung Kuo
-
Patent number: 8669128Abstract: This invention relates to structures and fabricating methods of light-emitting diodes capable of emitting white or a color within full-visible-spectrum with better efficiency and flexibility. An embodiment provides a light-emitting diode array consisted of one or more light-emitting diodes on a substrate. Each light-emitting diode comprises a first doped nanorod, an active light-emitting region consisted of one or more nanodisks on the first doped nanorod, and a second doped nanorod on the active light-emitting region. Another embodiment provides a fabricating method of the light-emitting diode array.Type: GrantFiled: December 22, 2011Date of Patent: March 11, 2014Assignee: National Tsing Hua UniversityInventors: Shang-Jr Gwo, Hon-Way Lin, Yu-Jung Lu
-
Patent number: 8242523Abstract: Embodiments of the present invention provides III-nitride light-emitting diodes, which primarily include a first electrode, a n-type gallium nitride (GaN) nanorod array consisted of one or more n-type GaN nanorods ohmic contacting with the first electrode, one or more indium gallium nitride (InGaN) nanodisks disposed on each of the n-type GaN nanorods, a p-type GaN nanorod array consisted of one or more p-type GaN nanorods, where one p-type GaN nanorod is disposed on top of the one ore more InGaN nanodisks disposed on each of the n-type GaN nanorods, and a second electrode ohmic contacts with the p-type GaN nanorod array.Type: GrantFiled: July 29, 2010Date of Patent: August 14, 2012Assignee: National Tsing Hua UniversityInventors: Shang-Jr Gwo, Hon-Way Lin, Yu-Jung Lu
-
Publication number: 20120097920Abstract: This invention relates to structures and fabricating methods of light-emitting diodes capable of emitting white or a color within full-visible-spectrum with better efficiency and flexibility. An embodiment provides a light-emitting diode array consisted of one or more light-emitting diodes on a substrate. Each light-emitting diode comprises a first doped nanorod, an active light-emitting region consisted of one or more nanodisks on the first doped nanorod, and a second doped nanorod on the active light-emitting region. Another embodiment provides a fabricating method of the light-emitting diode array.Type: ApplicationFiled: December 22, 2011Publication date: April 26, 2012Inventors: Shang-Jr GWO, Hon-Way Lin, Yu-Jung Lu
-
Publication number: 20120025232Abstract: Embodiments of the present invention provides III-nitride light-emitting diodes, which primarily include a first electrode, a n-type gallium nitride (GaN) nanorod array consisted of one or more n-type GaN nanorods ohmic contacting with the first electrode, one or more indium gallium nitride (InGaN) nanodisks disposed on each of the n-type GaN nanorods, a p-type GaN nanorod array consisted of one or more p-type GaN nanorods, where one p-type GaN nanorod is disposed on top of the one ore more InGaN nanodisks disposed on each of the n-type GaN nanorods, and a second electrode ohmic contacts with the p-type GaN nanorod array.Type: ApplicationFiled: July 29, 2010Publication date: February 2, 2012Applicant: National Tsing Hua UniversityInventors: Shang-Jr GWO, Hon-Way Lin, Yu-Jung Lu
-
Patent number: 7709823Abstract: The invention is directed to a group-III nitride vertical-rods substrate. The group-III vertical-rods substrate comprises a substrate, a buffer layer and a vertical rod layer. The buffer layer is located over the substrate. The vertical rod layer is located on the buffer layer and the vertical rod layer is comprised of a plurality of vertical rods standing on the buffer layer.Type: GrantFiled: October 25, 2006Date of Patent: May 4, 2010Assignees: Industrial Technology Research Institute, National Tsing Hua UniversityInventors: Chih-Ming Lai, Wen-Yueh Liu, Jenq-Dar Tsay, Jung-Tsung Hsu, Shang-Jr Gwo, Chang-Hong Shen, Hon-Way Lin
-
Publication number: 20070272914Abstract: The invention is directed to a group-III nitride vertical-rods substrate. The group-III vertical-rods substrate comprises a substrate, a buffer layer and a vertical rod layer. The buffer layer is located over the substrate. The vertical rod layer is located on the buffer layer and the vertical rod layer is comprised of a plurality of vertical rods standing on the buffer layer.Type: ApplicationFiled: October 25, 2006Publication date: November 29, 2007Applicants: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, NATIONAL TSING HUA UNIVERSITYInventors: Chih-Ming Lai, Wen-Yueh Liu, Jenq-Dar Tsay, Jung-Tsung Hsu, Shang-Jr Gwo, Chang-Hong Shen, Hon-Way Lin