Patents by Inventor Honesto Poblete

Honesto Poblete has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9725693
    Abstract: Methods of making a biologically active three-dimensional scaffold capable of supporting growth and differentiation of a cell are described. Biologically active three-dimensional scaffold made by the methods of the invention and an engineered tissue made from the scaffolds are described. Fibers of desired porosity can be obtained from non-structural ECM by lyophilization and/or electrospinning which can be useful for numerous tissue engineering applications requiring complex scaffolds, such as wound healing, artificial skin (burns), soft tissue replacement/repair and spinal cord injury.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: August 8, 2017
    Assignee: Drexel University
    Inventors: Peter I. Lelkes, Mengyan Li, Anat Perets, Honesto Poblete, Philip Lazarovici
  • Publication number: 20150079143
    Abstract: Methods of making a biologically active three-dimensional scaffold capable of supporting growth and differentiation of a cell are described. Biologically active three-dimensional scaffold made by the methods of the invention and an engineered tissue made from the scaffolds are described. Fibers of desired porosity can be obtained from non-structural ECM by lyophilization and/or electrospinning which can be useful for numerous tissue engineering applications requiring complex scaffolds, such as wound healing, artificial skin (burns), soft tissue replacement/repair and spinal cord injury.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 19, 2015
    Inventors: Peter I. Lelkes, Mengyan Li, Anat Perets, Honesto Poblete, Philip Lazarovici
  • Patent number: 8932620
    Abstract: Methods of making a biologically active three-dimensional scaffold capable of supporting growth and differentiation of a cell are described. Biologically active three-dimensional scaffold made by the methods of the invention and an engineered tissue made from the scaffolds are described. Fibers of desired porosity can be obtained from non-structural ECM by lyophilization and/or electrospinning which can be useful for numerous tissue engineering applications requiring complex scaffolds, such as wound healing, artificial skin (burns), soft tissue replacement/repair and spinal cord injury.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: January 13, 2015
    Assignee: Drexel University
    Inventors: Peter I. Lelkes, Mengyan Li, Anat Perets, Honesto Poblete, Philip Lazarovici
  • Publication number: 20080213389
    Abstract: Methods of making a biologically active three-dimensional scaffold capable of supporting growth and differentiation of a cell are described. Biologically active three-dimensional scaffold made by the methods of the invention and an engineered tissue made from the scaffolds are described. Fibers of desired porosity can be obtained from non-structural ECM by lyophilization and/or electrospinning which can be useful for numerous tissue engineering applications requiring complex scaffolds, such as wound healing, artificial skin (burns), soft tissue replacement/repair and spinal cord injury.
    Type: Application
    Filed: June 19, 2006
    Publication date: September 4, 2008
    Applicant: DREXEL UNIVERSITY
    Inventors: Peter I. Lelkes, Mengyan Li, Anat Perets, Honesto Poblete, Philip Lazarovici