Patents by Inventor Hong-Xi Zhang

Hong-Xi Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7362504
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device includes two refraction elements arranged opposite each other along a propagation axis and coupled on opposite ends to first and second polarization orientation elements with first and second PBS elements are coupled to the first and second polarization orientation elements, respectively. The refraction elements include complementary Wollaston Prism elements or Rochon Prism elements. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, a half-wave plate formed using thin film coating techniques. The Faraday rotator elements are periodically poled in some embodiments using selective poling techniques to create oppositely oriented magnetic domains so that polarization rotations of 45 degrees in both clockwise and counter-clockwise directions can be simultaneously achieved on the same magnetic garnet.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: April 22, 2008
    Assignee: Lightwave 2020, Inc.
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou
  • Publication number: 20060198022
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device includes two refraction elements arranged opposite each other along a propagation axis and coupled on opposite ends to first and second polarization orientation elements with first and second PBS elements are coupled to the first and second polarization orientation elements, respectively. The refraction elements include complementary Wollaston Prism elements or Rochon Prism elements. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, a half-wave plate formed using thin film coating techniques. The Faraday rotator elements are periodically poled in some embodiments using selective poling techniques to create oppositely oriented magnetic domains so that polarization rotations of 45 degrees in both clockwise and counter-clockwise directions can be simultaneously achieved on the same magnetic garnet.
    Type: Application
    Filed: December 13, 2005
    Publication date: September 7, 2006
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou
  • Patent number: 6987611
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device includes two refraction elements arranged opposite each other along a propagation axis and coupled on opposite ends to first and second polarization orientation elements with first and second PBS elements are coupled to the first and second polarization orientation elements, respectively. The refraction elements include complementary Wollaston Prism elements or Rochon Prism elements. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, a half-wave plate formed using thin film coating techniques. The Faraday rotator elements are periodically poled in some embodiments using selective poling techniques to create oppositely oriented magnetic domains so that polarization rotations of 45° in both clockwise and counter-clockwise directions can be simultaneously achieved on the same magnetic garnet.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: January 17, 2006
    Assignee: Lightwaves 2020, Inc.
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou
  • Publication number: 20040263972
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device includes two refraction elements arranged opposite each other along a propagation axis and coupled on opposite ends to first and second polarization orientation elements with first and second PBS elements are coupled to the first and second polarization orientation elements, respectively. The refraction elements include complementary Wollaston Prism elements or Rochon Prism elements. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, a half-wave plate formed using thin film coating techniques. The Faraday rotator elements are periodically poled in some embodiments using selective poling techniques to create oppositely oriented magnetic domains so that polarization rotations of 45° in both clockwise and counter-clockwise directions can be simultaneously achieved on the same magnetic garnet.
    Type: Application
    Filed: May 28, 2004
    Publication date: December 30, 2004
    Applicant: Lightwaves 2020, Inc.
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou
  • Patent number: 6795242
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device includes two refraction elements arranged opposite each other along a propagation axis and coupled on opposite ends to first and second polarization orientation elements with first and second PBS elements are coupled to the first and second polarization orientation elements, respectively. The refraction elements include complementary Wollaston Prism elements or Rochon Prism elements. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, a half-wave plate formed using thin film coating techniques. The Faraday rotator elements are periodically poled in some embodiments using selective poling techniques to create oppositely oriented magnetic domains so that polarization rotations of 45° in both clockwise and counter-clockwise directions can be simultaneously achieved on the same magnetic garnet.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: September 21, 2004
    Assignee: Lightwaves 2020, Inc.
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou
  • Patent number: 6785431
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device according to the present invention includes a spatial walkoff plate (SWP) coupled on opposite ends to first and second polarization orientation elements. First and second polarization beam splitter (PBS) elements are coupled to the first and second polarization orientation elements, respectively. The PBS elements are formed using thin film coating techniques and each includes an array of port coupling regions for coupling to an array of input/output fiber port assemblies. The SWP may be formed using thin film coating techniques or cut from a birefringent single crystal. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, each also includes a wave plate formed using thin film coating techniques.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: August 31, 2004
    Assignee: Lightwaves 2020, Inc.
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou
  • Publication number: 20030147578
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device according to the present invention includes a spatial walkoff plate (SWP) coupled on opposite ends to first and second polarization orientation elements. First and second polarization beam splitter (PBS) elements are coupled to the first and second polarization orientation elements, respectively. The PBS elements are formed using thin film coating techniques and each includes an array of port coupling regions for coupling to an array of input/output fiber port assemblies. The SWP may be formed using thin film coating techniques or cut from a birefringent single crystal. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, each also includes a wave plate formed using thin film coating techniques.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 7, 2003
    Applicant: Lightwaves 2020, Inc.
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou
  • Publication number: 20030147136
    Abstract: Miniature optical devices, including circulator array devices, are fabricated using thin film coating technology. A typical optical device according to the present invention includes two refraction elements arranged opposite each other along a propagation axis and coupled on opposite ends to first and second polarization orientation elements with first and second polarization beam splitter (PBS) elements are coupled to the first and second polarization orientation elements, respectively. The refraction elements include complementary Wollaston Prism elements or complementary Rochon Prism elements. Each polarization orientation element includes a Faraday rotator element, and in some embodiments, each also includes a half-wave plate formed using thin film coating techniques.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 7, 2003
    Applicant: Lightwaves 2020, Inc.
    Inventors: Jing-Jong Pan, Ming Zhou, Hong-Xi Zhang, Feng-Qing Zhou