Patents by Inventor Hong Xuan Nguyen

Hong Xuan Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6843744
    Abstract: A splice joint is for joining first and second synchronous drive belt ends, of the belt type comprising a reinforcement material layer covering a base layer formed from a first thermoplastic material. The joint comprises a fused portion of the base layer of the first and second belt ends that define a splice region. At least one coating layer of thermoplastic material overlaps the reinforcement layer of the end portions in the splice region. The coating layer is comprised of a second elastomeric material intended to melt and penetrate into interstices of the reinforcement material layer while within the mold press. Migration of the base layer material through the reinforcement material layer to the pulley-engaging outer surface is thereby inhibited. The second elastomeric material composing the coating layer may be selected to provide desired frictional and wear characteristics.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: January 18, 2005
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Michael John William Gregg, Hong Xuan Nguyen
  • Publication number: 20040121868
    Abstract: A splice joint is for joining first and second synchronous drive belt ends, of the belt type comprising a reinforcement material layer covering a base layer formed from a first thermoplastic material. The joint comprises a fused portion of the base layer of the first and second belt ends that define a splice region. At least one coating layer of thermoplastic material overlaps the reinforcement layer of the end portions in the splice region. The coating layer is comprised of a second elastomeric material intended to melt and penetrate into interstices of the reinforcement material layer while within the mold press. Migration of the base layer material through the reinforcement material layer to the pulley-engaging outer surface is thereby inhibited. The second elastomeric material composing the coating layer may be selected to provide desired frictional and wear characteristics.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Inventors: Michael John William Gregg, Hong Xuan Nguyen