Patents by Inventor Hongbo Peng

Hongbo Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120132886
    Abstract: A field effect transistor device includes: a reservoir bifurcated by a membrane of three layers: two electrically insulating layers; and an electrically conductive gate between the two insulating layers. The gate has a surface charge polarity different from at least one of the insulating layers. A nanochannel runs through the membrane, connecting both parts of the reservoir. The device further includes: an ionic solution filling the reservoir and the nanochannel; a drain electrode; a source electrode; and voltages applied to the electrodes (a voltage between the source and drain electrodes and a voltage on the gate) for turning on an ionic current through the ionic channel wherein the voltage on the gate gates the transportation of ions through the ionic channel.
    Type: Application
    Filed: February 3, 2012
    Publication date: May 31, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Gustavo Alejandro Stolovitzky
  • Patent number: 8110410
    Abstract: A field effect transistor device includes: a reservoir bifurcated by a membrane of three layers: two electrically insulating layers; and an electrically conductive gate between the two insulating layers. The gate has a surface charge polarity different from at least one of the insulating layers. A nanochannel runs through the membrane, connecting both parts of the reservoir. The device further includes: an ionic solution filling the reservoir and the nanochannel; a drain electrode; a source electrode; and voltages applied to the electrodes (a voltage between the source and drain electrodes and a voltage on the gate) for turning on an ionic current through the ionic channel wherein the voltage on the gate gates the transportation of ions through the ionic channel.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: February 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Stanislav Polonsky, Stephen M. Rossnagel, Gustavo Alejandro Stolovitzky
  • Patent number: 8084319
    Abstract: Methods are provided for fabricating devices. A first layer is formed. A hardmask on the first layer is formed. Features on the hardmask are patterned. The sizes of features on the hardmask are reduced by applying a plasma treatment process to form reduced size features. Also, the size of features on the hardmask can be enlarged to form enlarged size features by applying the plasma treatment process and/or removing the oxidized part of the feature during plasma treatment process. Another method may include a first layer formed on a substrate and a second layer formed on the first layer. First features are patterned on the first layer, and second features are patterned on the second layer. A size of second features on the second layer is closed due to the different oxidation rate of the two layers during the plasma treatment process, to form a self-sealed channel and/or self-buried trench.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: December 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Stephen M. Rossnagel, Katherine L. Saenger
  • Publication number: 20110312164
    Abstract: The present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A conductive layer is deposited on a substrate. The conductive layer is partially oxidized by an oxygen plasma process to convert a portion thereof to an oxide layer thereby forming the electrode. The oxide layer is free of surface defects and the thickness of the oxide layer is from about 0.09 nm to about 10 nm and ranges therebetween, controllable with 0.2 nm precision.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Azdakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20110308969
    Abstract: The present invention provides a method of reducing corrosion and water decomposition on a surface of an electrode having a titanium nitride conductive layer disposed on a substrate and estimating extent of reduction thereof. The electrode is immersed into a solution containing a hydroxyl-functional compound. Thereafter, a voltage is applied to the titanium nitride conductive layer of the electrode. The extent of oxidation of the titanium nitride conductive layer is correlated with the extent of formation of oxide of titanium nitride and/or the extent of oxidation of the titanium nitride conductive layer is correlated with the increase of surface roughness. The extent of water decomposition is correlated with formation of hydrogen and oxygen bubbles.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Azdakani, Shafaat Ahmed, Hariklia Deligianni, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20110312176
    Abstract: Accordingly, the present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A substrate which has a conductive layer disposed thereon is provided and the conductive layer has an oxide layer with an exposed surface. The exposed surface of the oxide layer contacts a solution of an organic surface active compound in an organic solvent to form a protective layer of the organic surface active compound over the oxide layer. The protective layer has a thickness of from about 0.5 nm to about 5 nm and ranges therebetween depending on a chemical structure of the surface active compound.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20110308949
    Abstract: The present invention provides a nano-fluidic field effective device. The device includes a channel having a first side and a second side, a first set of electrodes adjacent to the first side, a second set of electrodes adjacent to the second side, a control unit for applying electric potentials to the electrodes and a fluid within the channel containing a charge molecule. The first set of electrodes is disposed such that application of electric potentials produces a spatially varying electric field that confines a charged molecule within a predetermined area of said channel. The second set of electrodes is disposed such that application of electric potentials relative to the electric potentials applied to the first set of electrodes creates an electric field that confines the charged molecule to an area away from the second side of the channel.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Azdakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Dennis M. Newns, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Gustavo Stolovitzky
  • Publication number: 20110279125
    Abstract: A method of using a sensor comprising a field effect transistor (FET) embedded in a nanopore includes placing the sensor in an electrolyte comprising at least one of biomolecules and deoxyribonucleic acid (DNA); placing an electrode in the electrolyte; applying a gate voltage in the sub-threshold regime to the electrode; applying a drain voltage to a drain of the FET; applying a source voltage to a source of the FET; detecting a change in a drain current in the sensor in response to the at least one of biomolecules and DNA passing through the nanopore.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Christopher D' Emic, Hongbo Peng, Sufi Zafar
  • Patent number: 8039250
    Abstract: Apparatus, system, and methods are provided for utilizing piezoelectric material for controlling a polymer through a nanopore. A reservoir is formed filled with conductive fluid. A membrane is formed that separates the reservoir. A nanopore is formed through the membrane. The membrane comprises electrical conductive layers, piezoelectric layers, and insulating layers. The piezoelectric layers are operative to control a size of the nanopore for clamping/releasing a polymer as well as to control the thickness of part of the membrane when a voltage is applied to the piezoelectric layers. Combinations of clamping/releasing the polymer and changing the thickness of part of the membrane can move a polymer through the nanopore at any electrically controlled speed and also stretch or break a polymer in the nanopore.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Stephen M. Rossnagel, Stanislav Polonsky, Binquan Luan, Glenn J. Martyna
  • Publication number: 20110250705
    Abstract: A nanopore capture system may include a material configured to pass through a nanopore device in a controlled manner based upon its interaction with the nanopore device. The system may also include a capture mechanism connected to one end of the material. The capture mechanism may be configured to catch a particular type of molecule while ignoring other types of molecules. The system may also include a controller to manipulate and/or detect the particular type of molecule.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: International Business Machines Corporation
    Inventors: Stanislav Polonsky, Ali Afzali-Ardakani, Hongbo Peng, Gustavo A. Stolovitzky, Ajay A. Royyuru, Mark N. Wegman
  • Publication number: 20110223652
    Abstract: Apparatus, system, and methods are provided for utilizing piezoelectric material for controlling a polymer through a nanopore. A reservoir is formed filled with conductive fluid. A membrane is formed that separates the reservoir. A nanopore is formed through the membrane. The membrane comprises electrical conductive layers, piezoelectric layers, and insulating layers. The piezoelectric layers are operative to control a size of the nanopore for clamping/releasing a polymer as well as to control the thickness of part of the membrane when a voltage is applied to the piezoelectric layers. Combinations of clamping/releasing the polymer and changing the thickness of part of the membrane can move a polymer through the nanopore at any electrically controlled speed and also stretch or break a polymer in the nanopore.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 15, 2011
    Applicant: International Business Machines Corporation
    Inventors: Hongbo Peng, Gustavo A. Stolovitsky, Stephen M. Rossnagel, Stanislav Polonsky, Binquan Luan, Glenn J. Martyna
  • Publication number: 20110224098
    Abstract: Apparatus, system, and method are provided for cutting a linear charged polymer inside a nanopore. A first voltage is applied to create an electric field in a first direction. A second voltage is applied to create an electric field in a second direction, and the first direction is opposite to the second direction. When the electric field in the first direction and the electric field in the second direction are applied to a linear charged polymer inside a nanopore, the linear charged polymer is cut at a location with predetermined accuracy.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 15, 2011
    Applicant: International Business Machines Corporation
    Inventors: Binquan Luan, Glenn J. Martyna, Hongbo Peng, Gustavo A. Stolovitsky
  • Publication number: 20110201204
    Abstract: Methods are provided for fabricating devices. A first layer is formed. A hardmask on the first layer is formed. Features on the hardmask are patterned. The sizes of features on the hardmask are reduced by applying a plasma treatment process to form reduced size features. Also, the size of features on the hardmask can be enlarged to form enlarged size features by applying the plasma treatment process and/or removing the oxidized part of the feature during plasma treatment process. Another method may include a first layer formed on a substrate and a second layer formed on the first layer. First features are patterned on the first layer, and second features are patterned on the second layer. A size of second features on the second layer is closed due to the different oxidation rate of the two layers during the plasma treatment process, to form a self-sealed channel and/or self-buried trench.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Stephen M. Rossnagel, Katherine L. Saenger
  • Publication number: 20110094884
    Abstract: A filter includes a membrane having a plurality of nanochannels formed therein. A first surface charge material is deposited on an end portion of the nanochannels. The first surface charge material includes a surface charge to electrostatically influence ions in an electrolytic solution such that the nanochannels reflect ions back into the electrolytic solution while passing a fluid of the electrolytic solution. Methods for making and using the filter are also provided.
    Type: Application
    Filed: October 28, 2009
    Publication date: April 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John M. Cotte, Christopher V. Jahnes, Hongbo Peng, Stephen M. Rossnagel
  • Publication number: 20100327255
    Abstract: A field effect transistor device includes: a reservoir bifurcated by a membrane of three layers: two electrically insulating layers; and an electrically conductive gate between the two insulating layers. The gate has a surface charge polarity different from at least one of the insulating layers. A nanochannel runs through the membrane, connecting both parts of the reservoir. The device further includes: an ionic solution filling the reservoir and the nanochannel; a drain electrode; a source electrode; and voltages applied to the electrodes (a voltage between the source and drain electrodes and a voltage on the gate) for turning on an ionic current through the ionic channel wherein the voltage on the gate gates the transportation of ions through the ionic channel.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Gustavo Alejandro Stolovitzky