Patents by Inventor Hongfa Luan

Hongfa Luan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230386847
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Patent number: 11776814
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Publication number: 20210202255
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Patent number: 10950447
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Publication number: 20200321216
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Patent number: 10714348
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Publication number: 20200013623
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 9, 2020
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Patent number: 10504735
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hongfa Luan, Huicheng Chang, Cheng-Po Chau, Wen-Yu Ku, Yi-Fan Chen, Chun-Yen Peng
  • Patent number: 10269900
    Abstract: Presented herein is a device including an insulator layer disposed over a substrate. An adhesion layer is disposed over the insulator layer and includes a semiconductor oxide, the semiconductor oxide includes a compound of a semiconductor element and oxygen. A semiconductor film layer is over the adhesion layer, the semiconductor film layer being a material that includes the semiconductor element, the semiconductor film layer having a different composition than the adhesion layer. Bonds at an interface between the insulator layer and the adhesion layer comprise oxygen-hydrogen bonds and oxygen-semiconductor element bonds. An interface between a dummy gate and a gate dielectric layer of a gate-last transistor structure may be similarly formed.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Liao, Chun-Heng Chen, Sheng-Po Wu, Ming-Feng Hsieh, Hongfa Luan
  • Publication number: 20190103277
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Application
    Filed: April 13, 2018
    Publication date: April 4, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hongfa LUAN, Huicheng CHANG, Cheng-Po CHAU, Wen-Yu KU, Yi-Fan CHEN, Chun-Yen PENG
  • Publication number: 20170323939
    Abstract: Presented herein is a device including an insulator layer disposed over a substrate. An adhesion layer is disposed over the insulator layer and includes a semiconductor oxide, the semiconductor oxide includes a compound of a semiconductor element and oxygen. A semiconductor film layer is over the adhesion layer, the semiconductor film layer being a material that includes the semiconductor element, the semiconductor film layer having a different composition than the adhesion layer. Bonds at an interface between the insulator layer and the adhesion layer comprise oxygen-hydrogen bonds and oxygen-semiconductor element bonds. An interface between a dummy gate and a gate dielectric layer of a gate-last transistor structure may be similarly formed.
    Type: Application
    Filed: May 22, 2017
    Publication date: November 9, 2017
    Inventors: Chi-Ming Liao, Chun-Heng Chen, Sheng-Po Wu, Ming-Feng Hsieh, Hongfa Luan
  • Patent number: 9660023
    Abstract: Presented herein is a device including an insulator layer disposed over a substrate. An adhesion layer is disposed over the insulator layer and includes a semiconductor oxide, the semiconductor oxide including a compound of a semiconductor element and oxygen. A semiconductor film layer is over the adhesion layer, the semiconductor film layer being a material including the semiconductor element, the semiconductor film layer having a different composition than the adhesion layer. Bonds at an interface between the insulator layer and the adhesion layer comprise oxygen-hydrogen bonds and oxygen-semiconductor element bonds.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Liao, Chun-Heng Chen, Sheng-Po Wu, Ming-Feng Hsieh, Hongfa Luan
  • Patent number: 9659962
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. A complimentary metal oxide semiconductor (CMOS) device includes a PMOS transistor having at least two first gate electrodes comprising a first parameter, and an NMOS transistor having at least two second gate electrodes comprising a second parameter, wherein the second parameter is different than the first parameter. The first parameter and the second parameter may comprise the thickness or the dopant profile of the gate electrode materials of the PMOS and NMOS transistors. The first and second parameter of the at least two first gate electrodes and the at least two second gate electrodes establish the work function of the PMOS and NMOS transistors, respectively.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: May 23, 2017
    Assignee: Infineon Technologies AG
    Inventors: Thomas Schulz, Hongfa Luan
  • Patent number: 9607826
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: March 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20160111492
    Abstract: Presented herein is a device including an insulator layer disposed over a substrate. An adhesion layer is disposed over the insulator layer and includes a semiconductor oxide, the semiconductor oxide including a compound of a semiconductor element and oxygen. A semiconductor film layer is over the adhesion layer, the semiconductor film layer being a material including the semiconductor element, the semiconductor film layer having a different composition than the adhesion layer. Bonds at an interface between the insulator layer and the adhesion layer comprise oxygen-hydrogen bonds and oxygen-semiconductor element bonds.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 21, 2016
    Inventors: Chi-Ming Liao, Chun-Heng Chen, Sheng-Po Wu, Ming-Feng Hsieh, Hongfa Luan
  • Patent number: 9219120
    Abstract: Presented herein is a method for forming a semiconductor film using an adhesion layer, comprising providing an oxide layer disposed over a substrate, forming at least one adhesion layer over the oxide layer, and forming a film layer over the at least one adhesion layer in a same process step as the forming the at least one adhesion layer. Forming the at least one adhesion layer further comprises at least forming a first adhesion layer over the oxide layer and forming a second adhesion layer over the first adhesion layer. Forming the first adhesion layer comprises providing the terminating gas at a substantially constant first flow rate, and wherein the forming the second adhesion layer comprises ramping a flow rate of the terminating gas to a zero flow rate from the first flow rate.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: December 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Liao, Chun-Heng Chen, Sheng-Po Wu, Ming-Feng Hsieh, Hongfa Luan
  • Patent number: 9153657
    Abstract: A semiconductor device may include a fin disposed over a workpiece. The fin may include: a first semiconductive material disposed over the workpiece; an oxide of the first semiconductive material disposed over the first semiconductive material; a second conductive material disposed over and spaced apart from the oxide of the first semiconductive material; a first insulating material disposed around and lining the second semiconductive material; a conductive material disposed around the first insulating material; and a second insulating material disposed between the oxide of the first semiconductive material and a portion of the conductive material facing the workpiece, the second insulating material further lining sidewalls of the conductive material.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: October 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Yuan Chen, Teng-Chun Tsai, Kuo-Yin Lin, Wan-Chun Pan, Hsiang-Pi Chang, Shi Ning Ju, Yen-Yu Chen, Hongfa Luan, Kuo-Cheng Ching
  • Publication number: 20150221504
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Application
    Filed: April 13, 2015
    Publication date: August 6, 2015
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sung, Clement Hsingjen Wann
  • Publication number: 20150102470
    Abstract: Presented herein is a method for forming a semiconductor film using an adhesion layer, comprising providing an oxide layer disposed over a substrate, forming at least one adhesion layer over the oxide layer, and forming a film layer over the at least one adhesion layer in a same process step as the forming the at least one adhesion layer. Forming the at least one adhesion layer further comprises at least forming a first adhesion layer over the oxide layer and forming a second adhesion layer over the first adhesion layer. Forming the first adhesion layer comprises providing the terminating gas at a substantially constant first flow rate, and wherein the forming the second adhesion layer comprises ramping a flow rate of the terminating gas to a zero flow rate from the first flow rate.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Liao, Chun-Heng Chen, Sheng-Po Wu, Ming-Feng Hsieh, Hongfa Luan
  • Patent number: 9006802
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann