Patents by Inventor Honghua Yang

Honghua Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134939
    Abstract: A deep learning-based method for fusing multi-source urban energy data and a storage medium are provided to perform data fusion on multi-source urban energy data found in big data and perform multi-scale and multimodal information fusion by using a cross-modal transformer, thereby implementing cross-modal mutual fusion of multi-source heterogeneous types of data to obtain a fused feature for prediction of a quantity of energy that will be used in the future and a quantity of energy that needs to be produced. The present disclosure proposes a multi-scale cooperative multimodal transformer architecture to enhance an effect of representation learned from an unaligned multimodal sequence. Not only there is a higher degree of correlation in multi-source urban energy data fusion, but also a system becomes more lightweight.
    Type: Application
    Filed: December 4, 2022
    Publication date: April 25, 2024
    Applicant: STATE GRID JIANGSU ELECTRIC POWER CO., LTD NANJING POWER SUPPLY COMPANY
    Inventors: Zhengyi ZHU, Honghua XU, Weiya ZHANG, Long LIANG, Jinjie MA, Hengjun ZHOU, Wendi WANG, Xin QIAN, Linqing YANG
  • Patent number: 11215637
    Abstract: A method for obtaining optical spectroscopic information about a sub-micron region of a sample with quantitatively controlled depth/volume of the sample subsurface using a scanning probe microscope. With controlled probing depth/volume, the method can separate top surface data from subsurface optical/chemical information. The method can also be applied in liquid suitable for studying biological and chemical samples in their native aqueous environments, as opposed to air. In the method, a depth-controlled spectrum of the surface layer is constructed by illuminating the sample with a beam of infrared radiation and measuring a probe response using at least one of the resonant frequencies of the probe. The surface sensitivity is obtained by limiting the heat diffusion effect of the subsurface so as to confine the signal. The signal confinement is achieved through non-linearity of the acoustic wave with probe, as well as benefits gained by a high modulation frequency of the infrared radiation source at >1 MHz.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: January 4, 2022
    Assignee: Bruker Nano, Inc.
    Inventors: Alexandre Dazzi, Anirban Roy, Honghua Yang
  • Publication number: 20210011053
    Abstract: A method for obtaining optical spectroscopic information about a sub-micron region of a sample with quantitatively controlled depth/volume of the sample subsurface using a scanning probe microscope. With controlled probing depth/volume, the method can separate top surface data from subsurface optical/chemical information. The method can also be applied in liquid suitable for studying biological and chemical samples in their native aqueous environments, as opposed to air. In the method, a depth-controlled spectrum of the surface layer is constructed by illuminating the sample with a beam of infrared radiation and measuring a probe response using at least one of the resonant frequencies of the probe. The surface sensitivity is obtained by limiting the heat diffusion effect of the subsurface so as to confine the signal. The signal confinement is achieved through non-linearity of the acoustic wave with probe, as well as benefits gained by a high modulation frequency of the infrared radiation source at >1 MHz.
    Type: Application
    Filed: July 28, 2020
    Publication date: January 14, 2021
    Inventors: Alexandre Dazzi, Anirban Roy, Honghua Yang
  • Patent number: 10473693
    Abstract: Systems and methods may be provided for measuring an infrared absorption of a sub micrometer region of a sample. An Infrared light source may illuminate a sample in a region that is interacting with the tip of a Scanning Probe Microscope (SPM), stimulating the sample in a way that produces measurable optical properties related to Infrared absorption of the sample region. A probe light source is directed at the region of the sample and SPM tip, and probe light emanating from the tip and sample region is collected. The collected light may be used to derive infrared absorption spectrum information of the sample region, possibly on a sub-micron scale.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: November 12, 2019
    Assignee: Bruker Nano, Inc.
    Inventors: Honghua Yang, Craig Prater
  • Patent number: 10228389
    Abstract: System and method for measuring an optical property of a sub micrometer region of a sample including interacting a probe tip of a probe microscope with a region of the sample, illuminating the sample with a beam of light from a radiation source such that light is scattered from the probe-sample interaction region, interfering a reference beam with the scattered light wherein the reference beam has an adjustable optical phase, measuring with a detector at least a portion of the light scattered from probe-sample and background regions at a substantially constant reference phase, and constructing a signal indicative of the optical property of the sample wherein contributions from background scattered light are substantially suppressed.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 12, 2019
    Assignee: Bruker Nano, Inc.
    Inventors: Honghua Yang, Craig Prater
  • Patent number: 10082523
    Abstract: This invention involves measurement of optical properties of materials with sub-micron spatial resolution through infrared scattering scanning near field optical microscopy (s-SNOM). Specifically, the current invention provides substantial improvements over the prior art by achieving high signal to noise, high measurement speed and high accuracy of optical amplitude and phase. Additionally, it some embodiments, it eliminates the need for an in situ reference to calculate wavelength dependent spectra of optical phase, or absorption spectra. These goals are achieved via improved asymmetric interferometry where the near-field scattered light is interfered with a reference beam in an interferometer. The invention achieves dramatic improvements in background rejection by arranging a reference beam that is much more intense than the background scattered radiation.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 25, 2018
    Assignee: Bruker Nano, Inc.
    Inventors: Honghua Yang, Kevin Kjoller, Sam Berweger, Craig Prater
  • Publication number: 20180259553
    Abstract: Systems and methods may be provided for measuring an infrared absorption of a sub micrometer region of a sample. An Infrared light source may illuminate a sample in a region that is interacting with the tip of a Scanning Probe Microscope (SPM), stimulating the sample in a way that produces measurable optical properties related to Infrared absorption of the sample region. A probe light source is directed at the region of the sample and SPM tip, and probe light emanating from the tip and sample region is collected. The collected light may be used to derive infrared absorption spectrum information of the sample region, possibly on a sub-micron scale.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 13, 2018
    Inventors: Honghua Yang, Craig Prater
  • Publication number: 20180203039
    Abstract: This invention involves measurement of optical properties of materials with sub-micron spatial resolution through infrared scattering scanning near field optical microscopy (s-SNOM). Specifically, the current invention provides substantial improvements over the prior art by achieving high signal to noise, high measurement speed and high accuracy of optical amplitude and phase. Additionally, it some embodiments, it eliminates the need for an in situ reference to calculate wavelength dependent spectra of optical phase, or absorption spectra. These goals are achieved via improved asymmetric interferometry where the near-field scattered light is interfered with a reference beam in an interferometer. The invention achieves dramatic improvements in background rejection by arranging a reference beam that is much more intense than the background scattered radiation.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 19, 2018
    Applicant: Anasys Instruments
    Inventors: Honghua Yang, Kevin Kjoller, Sam Berweger, Craig Prater
  • Patent number: 9778282
    Abstract: This invention involves measurement of optical properties of materials with sub-micron spatial resolution through infrared scattering scanning near field optical microscopy (s-SNOM). Specifically, the current invention provides substantial improvements over the prior art by achieving high signal to noise, high measurement speed and high accuracy of optical amplitude and phase. Additionally, it some embodiments, it eliminates the need for an in situ reference to calculate wavelength dependent spectra of optical phase, or absorption spectra. These goals are achieved via improved asymmetric interferometry where the near-field scattered light is interfered with a reference beam in an interferometer. The invention achieves dramatic improvements in background rejection by arranging a reference beam that is much more intense than the background scattered radiation.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: October 3, 2017
    Assignee: Anasys Instruments
    Inventors: Honghua Yang, Kevin Kjoller, Sam Berweger, Craig Prater
  • Publication number: 20170219622
    Abstract: This invention involves measurement of optical properties of materials with sub-micron spatial resolution through infrared scattering scanning near field optical microscopy (s-SNOM). Specifically, the current invention provides substantial improvements over the prior art by achieving high signal to noise, high measurement speed and high accuracy of optical amplitude and phase. Additionally, it some embodiments, it eliminates the need for an in situ reference to calculate wavelength dependent spectra of optical phase, or absorption spectra. These goals are achieved via improved asymmetric interferometry where the near-field scattered light is interfered with a reference beam in an interferometer. The invention achieves dramatic improvements in background rejection by arranging a reference beam that is much more intense than the background scattered radiation.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Applicant: Anasys Instruments
    Inventors: Honghua Yang, Kevin Kjoller, Sam Berweger, Craig Prater
  • Publication number: 20170160309
    Abstract: System and method for measuring an optical property of a sub micrometer region of a sample including interacting a probe tip of a probe microscope with a region of the sample, illuminating the sample with a beam of light from a radiation source such that light is scattered from the probe-sample interaction region, interfering a reference beam with the scattered light wherein the reference beam has an adjustable optical phase, measuring with a detector at least a portion of the light scattered from probe-sample and background regions at a substantially constant reference phase, and constructing a signal indicative of the optical property of the sample wherein contributions from background scattered light are substantially suppressed.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 8, 2017
    Inventors: Honghua Yang, Craig Prater
  • Patent number: 9658247
    Abstract: This invention involves measurement of optical properties of materials with sub-micron spatial resolution through infrared scattering scanning near field optical microscopy (s-SNOM). Specifically, the current invention provides substantial improvements over the prior art by achieving high signal to noise, high measurement speed and high accuracy of optical amplitude and phase. Additionally, it some embodiments, it eliminates the need for an in situ reference to calculate wavelength dependent spectra of optical phase, or absorption spectra. These goals are achieved via improved asymmetric interferometry where the near-field scattered light is interfered with a reference beam in an interferometer. The invention achieves dramatic improvements in background rejection by arranging a reference beam that is much more intense than the background scattered radiation.
    Type: Grant
    Filed: March 1, 2015
    Date of Patent: May 23, 2017
    Assignee: Anasys Instruments
    Inventors: Honghua Yang, Kevin Kjoller, Sam Berweger, Craig Prater
  • Publication number: 20170003316
    Abstract: This invention involves measurement of optical properties of materials with sub-micron spatial resolution through infrared scattering scanning near field optical microscopy (s-SNOM). Specifically, the current invention provides substantial improvements over the prior art by achieving high signal to noise, high measurement speed and high accuracy of optical amplitude and phase. Additionally, it some embodiments, it eliminates the need for an in situ reference to calculate wavelength dependent spectra of optical phase, or absorption spectra. These goals are achieved via improved asymmetric interferometry where the near-field scattered light is interfered with a reference beam in an interferometer. The invention achieves dramatic improvements in background rejection by arranging a reference beam that is much more intense than the background scattered radiation.
    Type: Application
    Filed: March 1, 2015
    Publication date: January 5, 2017
    Applicant: ANASYS INSTRUMENTS
    Inventors: Honghua Yang, Kevin Kjoller, Sam Berweger, Craig Prater
  • Publication number: 20100291580
    Abstract: Biomarkers for identifying trichogenic cells have been identified. The biomarkers include microRNA as wells as mRNA and proteins. Certain biomarkers are upregulated in trichogenic cells compared to non-trichogenic cells; whereas, other biomarkers are down-regulated in trichogenic cells compared to non-trichogenic cells. The cells can be dermal cells, epidermal cells, or a combination thereof. Preferably the cells are mammalian, more preferably the cells are human. One embodiment provides a method for selecting trichogenic cells by assaying the cells for expression of one or more biomarkers for trichogenicity, and selecting the cells having increased expression of the one or more biomarkers relative to a control, wherein increased expression of the a biomarker in the cells is indicative of trichogenicity.
    Type: Application
    Filed: December 18, 2008
    Publication date: November 18, 2010
    Inventors: Satish Parimoo, Honghua Yang, Ying Homan, Wei Chen, Ying Zheng, Kurt Stenn
  • Publication number: 20050165650
    Abstract: Systems and techniques to create a reverse auction object having a plurality of components and assigning an auction profile, which is a set of auction rules, to the reverse auction object. The set of auction rules allow a user to control display of information to a plurality of bidders for an online reverse auction. The set of auction rules may also allow a user to control bid validation.
    Type: Application
    Filed: January 23, 2004
    Publication date: July 28, 2005
    Inventors: Prasad Kothapalli, Kayhan Demirel, David Wong, Honghua Yang