Patents by Inventor Hongjie Dai

Hongjie Dai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7105596
    Abstract: This invention relates generally to a method for producing composites of single-wall carbon nanotubes (SWNTs) and compositions thereof. In one embodiment, the present invention involves a method of producing a composite material that includes a matrix and a carbon nanotube material embedded within said matrix. In another embodiment, a method of producing a composite material containing carbon nanotube material is disclosed. This method includes the steps of preparing an assembly of a fibrous material; adding the carbon nanotube material to the fibrous material; and adding a matrix material precursor to the carbon nanotube material and the fibrous material.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: September 12, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7097820
    Abstract: This invention relates generally to carbon fiber produced from single-wall carbon nanotube (SWNT) molecular arrays. In one embodiment, the carbon fiber which comprises an aggregation of substantially parallel carbon nanotubes comprises more than one molecular array. Another embodiment of this invention is a large cable-like structure with enhanced tensile properties comprising a number of smaller separate arrays. In another embodiment, a composite structure is disclosed in which a central core array of metallic SWNTs is surrounded by a series of smaller circular non-metallic SWNT arrays.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: August 29, 2006
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Patent number: 7087207
    Abstract: This invention relates generally to a forming an array of single-wall carbon nanotubes (SWNT) in an electric field and compositions thereof. In one embodiment, a purified bucky paper of single-wall carbon nanotubes is used as the starting material. Upon oxidative treatment of the bucky paper surface, many tube and/or rope ends protrude up from the surface of the paper. Disposing the resulting bucky paper in an electric field results in the protruding tubes and or ropes of single-wall carbon nanotubes aligning in a direction substantially perpendicular to the paper surface. These tubes tend to coalesce to form a molecular array. In another embodiment, a molecular array of SWNTs can be made by “combing” the purified bucky paper starting material with a sharp microscopic tip to align the nanotubes.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: August 8, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7071406
    Abstract: This invention relates generally to forming an array of single-wall carbon nanotubes (SWNT). In one embodiment, a macroscopic molecular array is provided comprising at least about 106 single-wall carbon nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: July 4, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7067098
    Abstract: This invention relates generally to forming an array of single-wall carbon nanotubes (SWNT) and compositions thereof. In one embodiment, a homogeneous population of SWNT molecules is used to produce a substantially two-dimensional array made up of single-walled nanotubes aggregated in substantially parallel orientation to form a monolayer extending in directions substantially perpendicular to the orientation of the individual nanotubes. Using SWNT molecules of the same type and structure provides a homogeneous array. By using different SWNT molecules, either a random or ordered heterogeneous structure can be produced by employing successive reactions after removal of previously masked areas of a substrate. Tn one embodiment, SWNT molecules may be linked to a substrate through a linker moiety such as —S—, —S—(CH2)n,-NH-, SiO3(CH2)3NH- or the like.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: June 27, 2006
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Patent number: 7052666
    Abstract: This invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparations of homogemeous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: May 30, 2006
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7048999
    Abstract: This invention relates generally to a method for producing self-assembled objects comprising single-wall carbon nanotubes (SWNTs) and compositions thereof. In one embodiment, the present invention involves a three-dimensional structure of derivatized single-wall nanotube molecules that spontaneously form. It includes several component molecule having multiple derivatives brought together to assemble into the three-dimensional structure. In another embodiment, objects may be obtained by bonding functionally-specific agents (FSAs) groups of nanotubes into geometric structures. The bond selectivity of FSAs allow selected nanotubes of a particular size or kind to assemble together and inhibit the assembling of unselected nanotubes that may also be present.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: May 23, 2006
    Assignee: Wiiliam Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7048903
    Abstract: Macroscopically manipulable nanoscale devices made from nanotube assemblies are disclosed. The article of manufacture comprises a macroscopic mounting element capable of being manipulated or observed in a macroscale environment, and a nanoscale nanotube assembly attached to the mounting element. The article permits macroscale information to be provided to or obtained from a nanoscale environment. A method for making a macroscopically manipulable nanoscale devices comprises the steps of (1) providing a nanotube-containing material; (2) preparing a nanotube assembly device having at least one carbon nanotube for attachment; and (3) attaching said nanotube assembly to a surface of a mounting element.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: May 23, 2006
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7041620
    Abstract: This invention relates generally to a method for producing single-wall carbon nanotube (SWNT) catalyst supports and compositions thereof. In one embodiment, SWNTs or SWNT structures can be employed as the support material. A transition metal catalyst is added to the SWNT. In a preferred embodiment, the catalyst metal cluster is deposited on the open nanotube end by a docking process that insures optimum location for the subsequent growth reaction. The metal atoms may be subjected to reductive conditions.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: May 9, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7022541
    Abstract: A wafer-scale fabrication approach for manufacturing single-walled carbon nanotube (SWNT) tips is implemented. Catalyst material is selectively placed (e.g., patterned) onto a plurality of prefabricated elevated structures (e.g., silicon tips) on a wafer. SWNTs are grown protruding from the catalyst on the elevated structures. The resulting SWNT protruding from a tip can be implemented in a variety of applications, such as in atomic force microscopy (AFM). With this approach, nanotube tips can be implemented for a variety of applications, including advanced nanoscale imaging, imaging of solid-state and soft biological systems and for scanning probe lithography.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: April 4, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Erhan Yenilmez, Hongjie Dai
  • Patent number: 7008604
    Abstract: This invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparation of homogeneous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: March 7, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 6986876
    Abstract: This invention relates generally to forming arrays of single-wall carbon nanotubes (SWNT). In one embodiment, the present invention involves forming a macroscopic molecular array of tubular carbon molecules, said method comprising the step of assembling subarrays of up to 106 single-wall carbon nanotubes into a composite array.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: January 17, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 6979709
    Abstract: This invention relates generally to carbon fiber produced from single-wall carbon nanotube (SWNT) molecular arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 signal-wall carbon nanotubes in generally parallel orientation.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: December 27, 2005
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050260120
    Abstract: This invention relates generally to a forming an array of single-wall carbon nanotubes (SWNT) in an electric field and compositions thereof. In one embodiment, a purified bucky paper of single-wall carbon nanotubes is used as the starting material. Upon oxidative treatment of the bucky paper surface, many tube and/or rope ends protrude up from the surface of the paper. Disposing the resulting bucky paper in an electric field results in the protruding tubes and or ropes of single-wall carbon nanotubes aligning in a direction substantially perpendicular to the paper surface. These tubes tend to coalesce to form a molecular array. In another embodiment, a molecular array of SWNTs can be made by “combing” the purified bucky paper starting material with a sharp microscopic tip to align the nanotubes.
    Type: Application
    Filed: August 7, 2003
    Publication date: November 24, 2005
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Hongjie Dai, Jie Liu, Andrew Rinzler, Jason Hafner, Kenneth Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050249656
    Abstract: This invention relates generally to forming a patterned array of single-wall carbon nanotubes (SWNT). In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of single-wall carbon nanotubes from each microwell.
    Type: Application
    Filed: December 28, 2001
    Publication date: November 10, 2005
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Hongjie Dai, Jie Liu, Andrew Rinzler, Jason Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050244326
    Abstract: The invention relates generally to dispersing and fractionating single-wall carbon nanotubes, which can be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the nanotubes.
    Type: Application
    Filed: December 22, 2004
    Publication date: November 3, 2005
    Applicant: William Marsh Rice University
    Inventors: Daniel Colbert, Hongjie Dai, Jason Hafner, Andrew Rinzler, Richard Smalley, Jie Liu, Kenneth Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 6949237
    Abstract: This invention relates generally to a method for growing single-wall carbon nanotube (SWNT) from seed molecules. The supported or unsupported SWNT seed materials can be combined with a suitable growth catalyst by opening SWNT molecule ends and depositing a metal atom cluster. In one embodiment, a suspension of seed particles containing attached catalysts is injected into an evaporation zone to provide an entrained reactive nanoparticle. A carbonaceous feedstock gas is then introduced into the nanoparticle stream under conditions to grow single-wall carbon nanotubes. Recovery of the product produced can be done by filtration, centrifugation and the like.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: September 27, 2005
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 6939525
    Abstract: This invention relates generally to forming arrays of single-wall carbon nanotubes (SWNT) and compositions thereof. In one embodiment, the present invention involves forming an array from more than one separately prepared molecular arrays or templates to prepare a composite structure. The multiple arrays can be the same or different with respect to the SWNT type or geometric arrangement in the array.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 6, 2005
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 6936233
    Abstract: This invention relates generally to a single-wall carbon nanotube (SWNT) purification process and more particularly to a purification process that comprises heating the SWNT-containing felt under oxidizing conditions to remove the amorphous carbon deposits and other contaminating materials. In a preferred mode of this purification procedure, the felt is heated in an aqueous solution of an inorganic oxidant, such as nitric acid, a mixture of hydrogen peroxide and sulfuric acid, or a potassium permanganate. Preferably, SWNT-containing felts are refluxed in an aqueous solution of an oxidizing acid at a concentration high enough to etch away amorphous carbon deposits within a practical time frame, but not so high that the single-wall carbon nanotube material will be etched to a significant degree. When material having a high proportion of SWNT is purified, the preparation produced will be enriched in single-wall nanotubes, so that the SWNT are substantially free of other material.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: August 30, 2005
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050161750
    Abstract: A carbon nanotube is formed on at least one Molybdenum-based electrode. In one embodiment, a carbon-nanotube device includes a pair of Molybdenum-based electrodes over respective terraces. Using a catalyst on the Molybdenum-based material of at least one electrode, a carbon nanotube is grown over a gap that separates the terraces to connect the Molybdenum-based electrodes. Yet other aspects of the present invention employ carbon nanotubes extending (suspended) from respective Molybdenum-based structures for use in electrically addressable devices. The nanotubes can also be formed by patterned growth to bridge such Molybdenum-based electrodes. A particular method for manufacturing this device does not require post-growth processing. Applications include, among many others, scalable nanotube transistors/switches nano-electromechanical systems.
    Type: Application
    Filed: March 20, 2003
    Publication date: July 28, 2005
    Inventors: Hongjie Dai, Nathan Franklin, Qian Wang