Patents by Inventor Hongling CHU

Hongling CHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240002243
    Abstract: The present invention provides a method for separation and recovery of boron trifluoride and complexes thereof in an olefin polymerization reaction.
    Type: Application
    Filed: October 27, 2021
    Publication date: January 4, 2024
    Inventors: Tong LIU, Yuanyuan CAO, Yulong WANG, Libo WANG, Xianming XU, Hongping LI, Enhao SUN, Xiuhui WANG, Wei SUN, Han GAO, Hongling CHU, Yongjun ZHANG, Yonggang JI, Kecun MA, Yan JIANG, Qian CHEN, Hongliang HUO, Qi YU
  • Publication number: 20230374169
    Abstract: The present disclosure discloses a catalyst composition for polymerization of an ?-olefin and preparation and use thereof. The catalyst composition comprises boron trifluoride and at least one protic cocatalyst; the protic cocatalyst has a structural formula of X—(CH2)n—OH, where n is an integer selected from 1 to 10; X is selected from nitro, halogen, cyano, sulfonic acid group, aldehyde group, acyl, carboxyl and amino. The catalyst can be used in production of a poly(?-olefin) synthetic base oil, and is particularly suitable for a low viscosity poly(?-olefin) synthetic base oil with high selectivity of the target product.
    Type: Application
    Filed: January 7, 2022
    Publication date: November 23, 2023
    Inventors: Yuanyuan Cao, Tong Liu, Hongling Chu, Libo Wang, Yulong Wang, Xianming Xu, Xiuhui Wang, Han Gao, Wei Sun, Hongpeng Li
  • Patent number: 11352572
    Abstract: The present invention provides a low viscosity poly-?-olefin lubricating oil and a synthesis method thereof. The method comprises: (1) the ?-olefin raw material is subjected to dehydration treatment so that the water content in the raw material is ?10 ppm; (2) a reaction of the dehydration treated ?-olefin raw material is carried out in the presence of a complex catalyst and gaseous BF3 to obtain a reaction product, wherein the pressure of the gaseous BF3 is 0.01 to 1 MPa; (3) the reaction product obtained in step (2) is sequentially subjected to flash distillation, gas stripping, centrifugation, and washing treatment to obtain an intermediate product; (4) the intermediate product obtained in step (3) is subjected to distillation under reduced pressure to separate the unreacted ?-olefin raw material and ?-olefin dimers, and the remaining heavy fractions are subjected to hydrogenation saturation treatment followed by fractionation and cutting-off.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: June 7, 2022
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Hongling Chu, Sihan Wang, Kecun Ma, Xianming Xu, Libo Wang, Guizhi Wang, Yan Jiang, Legang Feng, Yulong Wang, Enhao Sun, Hongliang Huo, Tong Liu, Yali Wang, Xiuhui Wang, Han Gao, Yuanyuan Cao, Fengrong Wang, Weihong Guan, Ruhai Lin, Xuemei Han, Yunguang Han, Fuling Huang, Buwei Yu
  • Patent number: 11298693
    Abstract: The present disclosure provides a method and a catalyst for selective oligomerization of ethylene. The raw material for the catalyst consists of a dehydropyridine annulene-type ligand, a transition metal compound, and an organometallic compound in a molar ratio of 1:0.5-100:0.1-5000. The present disclosure also provides a method for selective oligomerization of ethylene accomplished by using the above-mentioned catalyst. The catalyst for selective oligomerization of ethylene has high catalytic activity, high selectivity for the target products 1-hexene and 1-octene, and low selectivity for 1-butene and 1-C10+.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: April 12, 2022
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Buwei Yu, Tao Jiang, Sihan Wang, Hongling Chu, Yan Jiang, Hongliang Huo, Xianming Xu, Libo Wang, Huaiqi Shao, Yali Wang, Yuanyuan Cao, Tong Liu, Kecun Ma, Fuling Huang, Xiuhui Wang, Enhao Sun, Yulong Wang
  • Publication number: 20200190409
    Abstract: The present invention provides a low viscosity poly-?-olefin lubricating oil and a synthesis method thereof. The method comprises: (1) the ?-olefin raw material is subjected to dehydration treatment so that the water content in the raw material is ?10 ppm; (2) a reaction of the dehydration treated ?-olefin raw material is carried out in the presence of a complex catalyst and gaseous BF3 to obtain a reaction product, wherein the pressure of the gaseous BF3 is 0.01 to 1 MPa; (3) the reaction product obtained in step (2) is sequentially subjected to flash distillation, gas stripping, centrifugation, and washing treatment to obtain an intermediate product; (4) the intermediate product obtained in step (3) is subjected to distillation under reduced pressure to separate the unreacted ?-olefin raw material and ?-olefin dimers, and the remaining heavy fractions are subjected to hydrogenation saturation treatment followed by fractionation and cutting-off.
    Type: Application
    Filed: October 24, 2019
    Publication date: June 18, 2020
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Hongling CHU, Sihan WANG, Kecun MA, Xianming XU, Libo WANG, Guizhi WANG, Yan JIANG, Legang FENG, Yulong WANG, Enhao SUN, Hongliang HUO, Tong LIU, Yali WANG, Xiuhui WANG, Han GAO, Yuanyuan CAO, Fengrong WANG, Weihong GUAN, Ruhai LIN, Xuemei HAN, Yunguang HAN, Fuling HUANG, Buwei YU
  • Publication number: 20190388882
    Abstract: The present disclosure provides a method and a catalyst for selective oligomerization of ethylene. The raw material for the catalyst consists of a dehydropyridine annulene-type ligand, a transition metal compound, and an organometallic compound in a molar ratio of 1:0.5-100:0.1-5000. The present disclosure also provides a method for selective oligomerization of ethylene accomplished by using the above-mentioned catalyst. The catalyst for selective oligomerization of ethylene has high catalytic activity, high selectivity for the target products 1-hexene and 1-octene, and low selectivity for 1-butene and 1-C10+.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Buwei YU, Tao JIANG, Sihan WANG, Hongling CHU, Yan JIANG, Hongliang HUO, Xianming XU, Libo WANG, Huaiqi SHAO, Yali WANG, Yuanyuan CAO, Tong LIU, Kecun MA, Fuling HUANG, Xiuhui WANG, Enhao SUN, Yulong WANG
  • Patent number: 10258965
    Abstract: The present invention relates to a method for preparing a sulfur-resistant catalyst for aromatics saturated hydrogenation, comprising the steps of: preparing noble metal impregnation solutions from a noble metal and deionized water or an acid solution; impregnating a carrier with the impregnation solutions sequentially from high to low concentrations by incipient impregnation; homogenizing, drying, and calcinating to obtain the sulfur-resistant catalyst for aromatics saturated hydrogenation. The catalyst for aromatics saturated hydrogenation prepared by the method according to the present invention is primarily used in processing low-sulfur and high-aromatics light distillate, middle distillate, atmospheric gas oil, and vacuum gas oil.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: April 16, 2019
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xiaodong Yang, Yanfeng Liu, Sheng Hu, Chunmei Yu, Hongling Chu, Xinmiao Wang, Shanbin Gao, Bin Xie, Famin Sun, Wencheng Zhang, Jintao Guo, Quanguo Zhang, Lili Jiang, Xiaofeng Wang, Yuanyuan Ji, Ran Sun, Yuxiao Feng, Xianjun Wu, Guojia Zhang, Tan Zhao, Wenyong Liu, Rui Li, Ruifeng Li, Cheng Tang
  • Publication number: 20160167017
    Abstract: The present invention relates to a method for preparing a sulfur-resistant catalyst for aromatics saturated hydrogenation, comprising the steps of: preparing noble metal impregnation solutions from a noble metal and deionized water or an acid solution; impregnating a carrier with the impregnation solutions sequentially from high to low concentrations by incipient impregnation; homogenizing, drying, and calcinating to obtain the sulfur-resistant catalyst for aromatics saturated hydrogenation. The catalyst for aromatics saturated hydrogenation prepared by the method according to the present invention is primarily used in processing low-sulfur and high-aromatics light distillate, middle distillate, atmospheric gas oil, and vacuum gas oil.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 16, 2016
    Inventors: Xiaodong YANG, Yanfeng LIU, Sheng HU, Chunmei YU, Hongling CHU, Xinmiao Wang, Shanbin GAO, Bin XIE, Famin SUN, Wencheng Zhang, Jintao GUO, Quanguo Zhang, Lili JIANG, Xiaofeng Wang, Yuanyuan JI, Ran SUN, Yuxiao FENG, Xianjun WU, Guojia ZHANG, Tan ZHAO, Wenyong LIU, Rui LI, Ruifeng LI, Cheng TANG