Patents by Inventor Hongpei WANG

Hongpei WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10608653
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: March 31, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Ding Li, Shuai Du, Hongpei Wang
  • Publication number: 20190229739
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 25, 2019
    Inventors: Ding LI, Shuai Du, Hongpei Wang
  • Patent number: 10224947
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 5, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Ding Li, Shuai Du, Hongpei Wang
  • Publication number: 20180191363
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 5, 2018
    Inventors: Ding LI, Shuai DU, Hongpei WANG