Patents by Inventor Hongxiao Shao

Hongxiao Shao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9419567
    Abstract: The present disclosure relates to a system for biasing a power amplifier. The system can include a first die that includes a power amplifier circuit and a passive component having an electrical property that depends on one or more conditions of the first die. Further, the system can include a second die including a bias signal generating circuit that is configured to generate a bias signal based at least in part on measurement of the electrical property of the passive component of the first die.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: August 16, 2016
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: David Steven Ripley, Philip John Lehtola, Peter J. Zampardi, Jr., Hongxiao Shao, Tin Myint Ko, Matthew Thomas Ozalas
  • Patent number: 9287226
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: March 15, 2016
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Weimin Sun, Peter J. Zampardi, Jr., Hongxiao Shao
  • Publication number: 20160043458
    Abstract: Devices and methods related to directional couplers. In some implementations, a coupler can include a driver arm and a coupler arm implemented relative to the driver arm to detect power of an RF signal. Portions of the driver and coupler arms can form an overlapping region, with at least one of the driver and coupler arms having a non-straight arm shape. The overlapping region can include a non-zero lateral offset between the driver and coupler arms. In some implementations, a coupler can include a driver arm having input and output sides, and a coupler arm having input and output sides and implemented relative to the driver arm to detect power of an RF signal. The coupler can further include a phase-shifting feature implemented with respect to at least one of the driver and coupler arms to reduce phase difference of power ripples associated with the coupler.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 11, 2016
    Inventors: Weimin SUN, Xiaofang MU, Hongxiao SHAO
  • Publication number: 20150326182
    Abstract: A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm?3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Application
    Filed: April 14, 2015
    Publication date: November 12, 2015
    Inventors: Howard E. Chen, Yifan Guo, Dinhphuoc Vu Hoang, Mehran Janani, Tin Myint Ko, Philip John Lehtola, Anthony James LoBianco, Hardik Bhupendra Modi, Hoang Mong Nguyen, Matthew Thomas Ozalas, Sandra Louise Petty-Weeks, Matthew Sean Read, Jens Albrecht Riege, David Steven Ripley, Hongxiao Shao, Hong Shen, Weimin Sun, Hsiang-Chih Sun, Patrick Lawrence Welch, Peter J. Zampardi, JR., Guohao Zhang
  • Publication number: 20150326181
    Abstract: A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm?3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Application
    Filed: April 14, 2015
    Publication date: November 12, 2015
    Inventors: Howard E. Chen, Yifan Guo, Dinhphuoc Vu Hoang, Mehran Janani, Tin Myint Ko, Philip John Lehtola, Anthony James LoBianco, Hardik Bhupendra Modi, Hoang Mong Nguyen, Matthew Thomas Ozalas, Sandra Louise Petty-Weeks, Matthew Sean Read, Jens Albrecht Riege, David Steven Ripley, Hongxiao Shao, Hong Shen, Weimin Sun, Hsiang-Chih Sun, Patrick Lawrence Welch, Peter J. Zampardi, JR., Guohao Zhang
  • Publication number: 20150326183
    Abstract: One aspect of this disclosure is a power amplifier module that includes a power amplifier die including a power amplifier configured to amplify a radio frequency (RF) signal, the power amplifier including a heterojunction bipolar transistor (HBT) and a p-type field effect transistor (PFET), the PFET including a semiconductor segment that includes substantially the same material as a layer of a collector of the HBT, the semiconductor segment corresponding to a channel of the PFET; a load line electrically connected to an output of the power amplifier and configured to provide impedance matching at a fundamental frequency of the RF signal; and a harmonic termination circuit electrically connected to the output of the power amplifier and configured to terminate at a phase corresponding to a harmonic frequency of the RF signal. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Application
    Filed: April 14, 2015
    Publication date: November 12, 2015
    Inventors: Howard E. Chen, Yifan Guo, Dinhphuoc Vu Hoang, Mehran Janani, Tin Myint Ko, Philip John Lehtola, Anthony James LoBianco, Hardik Bhupendra Modi, Hoang Mong Nguyen, Matthew Thomas Ozalas, Sandra Louise Petty-Weeks, Matthew Sean Read, Jens Albrecht Riege, David Steven Ripley, Hongxiao Shao, Hong Shen, Weimin Sun, Hsiang-Chih Sun, Patrick Lawrence Welch, Peter J. Zampardi, JR., Guohao Zhang
  • Patent number: 9041472
    Abstract: A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm?3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: May 26, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Howard E. Chen, Yifan Guo, Dinhphuoc Vu Hoang, Mehran Janani, Tin Myint Ko, Philip John Lehtola, Anthony James LoBianco, Hardik Bhupendra Modi, Hoang Mong Nguyen, Matthew Thomas Ozalas, Sandra Louise Petty-Weeks, Matthew Sean Read, Jens Albrecht Riege, David Steven Ripley, Hongxiao Shao, Hong Shen, Weimin Sun, Hsiang-Chih Sun, Patrick Lawrence Welch, Peter J. Zampardi, Jr., Guohao Zhang
  • Publication number: 20150124552
    Abstract: A system and method for mixing a gas and a liquid includes, receiving a liquid at a liquid inlet of a convergent nozzle and ejecting the liquid at a predetermined output velocity from a liquid outlet of the convergent nozzle into a mixing chamber, the mixing chamber comprising a cantilevered reed positioned within the mixing chamber. The ejection of the liquid from the liquid outlet causes the cantilevered reed to vibrate at an intrinsic frequency. The vibration of the cantilevered reed induces resonance between the liquid and the cantilevered reed and the resonance results in an ultrasound wave within the liquid. Upon the introduction of a gas into the liquid within the mixing chamber, the mixing of the gas into the liquid is effected by the ultrasound wave generated by the cantilevered reed.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 7, 2015
    Inventors: Yang Shi, Hongxiao Shao
  • Publication number: 20150061092
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Weimin Sun, Peter J. Zampardi, JR., Hongxiao Shao
  • Publication number: 20150044863
    Abstract: To reduce radio frequency (RF) losses during operation of a radio frequency integrated circuit (RFIC) module, the RFIC module is fabricated such that at least one of an edge of the wirebond pad on the copper trace and a sidewall of the copper trace is free from high-resistivity plating material. The unplated portion provides a path for the RF current to flow around the high-resistivity material, which reduces the RF signal loss associated with the high resistivity plating material.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Weimin Sun, Peter J. Zampardi, JR., Hongxiao Shao
  • Patent number: 8896091
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: November 25, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Jr., Hongxiao Shao
  • Patent number: 8889995
    Abstract: To reduce the RF losses associated with high RF loss plating, such as, for example, Ni/Pd/Au plating, the solder mask is reconfigured to prevent the edges and sidewalls of the wire-bond areas from being plated in some embodiments. Leaving the edges and sidewalls of the wire-bond areas free from high RF loss plating, such as Ni/Pd/Au plating, provides a path for the RF current to flow around the high resistivity material, which reduces the RF signal loss associated with the high resistivity plating material.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 18, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Publication number: 20140175629
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Patent number: 8686537
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 1, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Publication number: 20140002188
    Abstract: A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm?3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 2, 2014
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Howard E. Chen, Yifan Guo, Dinhphuoc Vu Hoang, Mehran Janani, Tin Myint Ko, Philip John Lehtola, Anthony James LoBianco, Hardik Bhupendra Modi, Hoang Mong Nguyen, Matthew Thomas Ozalas, Sandra Louise Petty-Weeks, Matthew Sean Read, Jens Albrecht Riege, David Steven Ripley, Hongxiao Shao, Hong Shen, Weimin Sun, Hsiang-Chih Sun, Patrick Lawrence Welch, Peter J. Zampardi, JR., Guohao Zhang
  • Publication number: 20130344825
    Abstract: The present disclosure relates to a system for biasing a power amplifier. The system can include a first die that includes a power amplifier circuit and a passive component having an electrical property that depends on one or more conditions of the first die. Further, the system can include a second die including a bias signal generating circuit that is configured to generate a bias signal based at least in part on measurement of the electrical property of the passive component of the first die.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventors: David Steven Ripley, Philip John Lehtola, Peter J. Zampardi, JR., Hongxiao Shao, Tin Myint Ko, Matthew Thomas Ozalas
  • Publication number: 20120222892
    Abstract: To reduce the RF losses associated with high RF loss plating, such as, for example, Ni/Pd/Au plating, the solder mask is reconfigured to prevent the edges and sidewalls of the wire-bond areas from being plated in some embodiments. Leaving the edges and sidewalls of the wire-bond areas free from high RF loss plating, such as Ni/Pd/Au plating, provides a path for the RF current to flow around the high resistivity material, which reduces the RF signal loss associated with the high resistivity plating material.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 6, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Publication number: 20120223422
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 6, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao