Patents by Inventor Hongye Liang

Hongye Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11214823
    Abstract: The present invention relates to sample-to-answer systems, devices, cartridges, and method of using the same for detecting the presence of microorganisms in a sample, such as bacteria.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: January 4, 2022
    Assignee: Canon U.S.A., Inc.
    Inventors: Abhijit Dohale, Arvind Virmani, Brian Scrivens, Christopher Sneeder, Denis Alias, George Maltezos, Hanyoup Kim, Harini Shandilya, Hongye Liang, Jason Zsak, Johnathan Stuart Coursey, Kenton C. Hasson, Melissa Gosse, Shulin Zeng, Yasuyuki Numajiri, Makoto Ogusu, Yoichi Murakami, Kunihiro Sakai
  • Patent number: 10363558
    Abstract: The present invention relates to systems and methods for the real time processing of nucleic acid during polymerase chain reaction (PCR) and thermal melt applications. According to an aspect of the invention, a system for the rapid serial processing of multiple nucleic acid assays is provided. In one embodiment, the system includes, but is not limited to: a microfluidic cartridge having microfluidic (flow-through) channels, a fluorescence imaging system, a temperature measurement and control system; a pressure measurement and control system for applying variable pneumatic pressures to the microfluidic cartridge; a storage device for holding multiple reagents (e.g., a well-plate); a liquid handling system comprising at least one robotic pipettor for aspirating, mixing, and dispensing reagent mixtures to the microfluidic cartridge; systems for data storage, processing, and output; and a system controller to coordinate the various devices and functions.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: July 30, 2019
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Ivor T. Knight, Kenton C. Hasson, Johnathan S. Coursey, Hongye Liang, Sami Kanderian, Gregory H. Owen, Weidong Cao, Ying-Xin Wang, Scott Corey, Ben Lane, Conrad Laskowski, Alex Flamm, Brian Murphy, Eric Schneider, Takayoshi Hanagata, Hiroshi Inoue, Shulin Zeng, Brian Bean, Franklin Regan
  • Patent number: 10266873
    Abstract: This invention relates to systems and methods for imaging sample materials within a microfluidic device during an assay reaction process. In accordance with certain aspects of the invention, images are formed with a pixel array and a region of interest (“ROI”) is defined within the pixel array. Image values, such as fluorescent intensity, can be computed as averages of individual pixel values within the ROI. Where the ROI is subject to non-uniform conditions, such as non-uniform heating, the ROI can be divided into sub-ROIs which are sufficiently small that the condition is uniform within the sub-ROI.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: April 23, 2019
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Hongye Liang, Kenton C. Hasson
  • Publication number: 20180193839
    Abstract: The present invention, in one aspect, provides methods and systems for controlling slugs using temperature dependent fluorescent dyes. In some embodiments, the present invention uses one or more techniques to enhance the visibility of slugs, enhance a system's ability to differentiate between slugs, and enhance a system's ability to identify the positions of slugs.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Johnathan S. Coursey, Kenton C. Hasson, Sami Kanderian, Gregory H. Owen, Hongye Liang, Scott Corey, Brian Bean
  • Patent number: 9861985
    Abstract: The present invention, in one aspect, provides methods and systems for controlling slugs using temperature dependent fluorescent dyes. In some embodiments, the present invention uses one or more techniques to enhance the visibility of slugs, enhance a system's ability to differentiate between slugs, and enhance a system's ability to identify the positions of slugs.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: January 9, 2018
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Johnathan S. Coursey, Kenton C. Hasson, Sami Kanderian, Gregory H. Owen, Hongye Liang, Scott Corey, Brian Bean
  • Publication number: 20170327867
    Abstract: The present invention relates to sample-to-answer systems, devices, cartridges, and method of using the same for detecting the presence of microorganisms in a sample, such as bacteria.
    Type: Application
    Filed: December 22, 2016
    Publication date: November 16, 2017
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Abhijit Dohale, Arvind Virmani, Brian Scrivens, Christopher Sneeder, Denis Alias, George Maltezos, Hanyoup Kim, Harini Shandilya, Hongye Liang, Jason Zsak, Johnathan Stuart Coursey, Kenton C. Hasson, Melissa Gosse, Shulin Zeng, Yasuyuki Numajiri, Makoto Ogusu, Yoichi Murakami, Kunihiro Sakai
  • Publication number: 20160051985
    Abstract: The present invention relates to systems and methods for the real time processing of nucleic acid during polymerase chain reaction (PCR) and thermal melt applications. According to an aspect of the invention, a system for the rapid serial processing of multiple nucleic acid assays is provided. In one embodiment, the system includes, but is not limited to: a microfluidic cartridge having microfluidic (flow-through) channels, a fluorescence imaging system, a temperature measurement and control system; a pressure measurement and control system for applying variable pneumatic pressures to the microfluidic cartridge; a storage device for holding multiple reagents (e.g., a well-plate); a liquid handling system comprising at least one robotic pipettor for aspirating, mixing, and dispensing reagent mixtures to the microfluidic cartridge; systems for data storage, processing, and output; and a system controller to coordinate the various devices and functions.
    Type: Application
    Filed: August 24, 2015
    Publication date: February 25, 2016
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Ivor T. KNIGHT, Kenton C. Hasson, Johnathan S. Coursey, Hongye Liang, Sami Kanderian, Gregory H. Owen, Weidong Cao, Ying-Xin Wang, Scott Corey, Ben Lane, Conrad Laskowski, Alex Flamm, Brian Murphy, Eric Schneider, Takayoshi Hanagata, Hiroshi Inoue, Shulin Zeng, Brian Bean, Franklin Regan
  • Patent number: 9234236
    Abstract: A microfluidic chip includes microfluidic channels, elements for thermally and optically isolating the microfluidic channels, and elements for enhancing the detection of optical signal emitted from the microfluidic channels. The thermal and optical isolation elements may comprise barrier channels interposed between adjacently-arranged pairs of microfluidic channels for preventing thermal and optical cross-talk between the adjacent microfluidic channels. The isolation element may alternatively comprise reflective film embedded in the microfluidic chip between the adjacent microfluidic channels. The signal enhancement elements comprise structures disposed adjacent to the microfluidic channels that reflect light passing through or emitted from the microfluidic channel in a direction toward a detector. The structures may comprise channels or a faceted surface that redirects the light by total internal reflection or reflective film material embedded in the microfluidic chip.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: January 12, 2016
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Bradley S. Thomas, Johnathan S. Coursey, Kenton C. Hasson, Hongye Liang
  • Patent number: 9114399
    Abstract: The present invention relates to systems and methods for the real time processing of nucleic acid during polymerase chain reaction (PCR) and thermal melt applications. According to an aspect of the invention, a system for the rapid serial processing of multiple nucleic acid assays is provided. In one embodiment, the system includes, but is not limited to: a microfluidic cartridge having microfluidic (flow-through) channels, a fluorescence imaging system, a temperature measurement and control system; a pressure measurement and control system for applying variable pneumatic pressures to the microfluidic cartridge; a storage device for holding multiple reagents (e.g., a well-plate); a liquid handling system comprising at least one robotic pipettor for aspirating, mixing, and dispensing reagent mixtures to the microfluidic cartridge; systems for data storage, processing, and output; and a system controller to coordinate the various devices and functions.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 25, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Ivor T. Knight, Kenton C. Hasson, Johnathan S. Coursey, Hongye Liang, Sami Kanderian, Gregory H. Owen, Weidong Cao, Ying-Xin Wang, Scott Corey, Ben Lane, Conrad Laskowski, Alex Flamm, Brian Murphy, Eric Schneider, Takayoshi Hanagata, Hiroshi Inoue, Shulin Zeng, Brian Bean, Franklin Regan
  • Publication number: 20150182967
    Abstract: A microfluidic device is disclosed including a printed circuit board (PCB) and a microfluidic layer attached to the PCB. The microfluidic layer may include a microfluidic feature. The PCB may include laminated non-conductive and conductive layers. The PCB may also include an electronic component embedded in the laminated non-conductive and conductive layers. A non-conductive layer of the non-conductive layers may be configured to fluidically isolate the electronic component from fluid in the microfluidic feature. The electronic component may be connected to a conductor of a conductive layer of the conductive layers. The PCB may have a fiberglass core or a metal core, which may spread heat to the microfluidic feature. One or more of the conductive layers may be made with heavy copper or extreme copper, and the heavy or extreme copper may spread heat to the microfluidic feature.
    Type: Application
    Filed: December 30, 2014
    Publication date: July 2, 2015
    Applicant: CANON U.S. LIFE SCIENCES, INC.
    Inventors: Johnathan S. COURSEY, Hongye LIANG
  • Publication number: 20150182966
    Abstract: A field-deployable small format microfluidic system includes simplified, low-cost system control elements, optics, fluid control, and thermal control. An embodiment of a microfluidic chip includes a first plate having reagent wells and pneumatic ports formed therein, a second plate with reaction wells and microfluidic channels connecting each reaction well with one reagent well and one pneumatic port formed therein, and a printed circuit board with heater elements, a temperature sensor, and thermal vias providing thermal transfer through the PCB. In one embodiment, the reaction wells, pneumatic ports, reaction wells, and thermal vias are formed symmetrically with respect to a geometric center of the microfluidic chip to promote thermal uniformity across the reaction wells.
    Type: Application
    Filed: December 30, 2014
    Publication date: July 2, 2015
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Johnathan S. COURSEY, Hongye LIANG
  • Publication number: 20150118738
    Abstract: A microfluidic chip includes microfluidic channels, elements for thermally and optically isolating the microfluidic channels, and elements for enhancing the detection of optical signal emitted from the microfluidic channels. The thermal and optical isolation elements may comprise barrier channels interposed between adjacently-arranged pairs of microfluidic channels for preventing thermal and optical cross-talk between the adjacent microfluidic channels. The isolation element may alternatively comprise reflective film embedded in the microfluidic chip between the adjacent microfluidic channels. The signal enhancement elements comprise structures disposed adjacent to the microfluidic channels that reflect light passing through or emitted from the microfluidic channel in a direction toward a detector. The structures may comprise channels or a faceted surface that redirects the light by total internal reflection or reflective film material embedded in the microfluidic chip.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 30, 2015
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Bradley S. Thomas, Johnathan S. Coursey, Kenton C. Hasson, Hongye Liang
  • Publication number: 20150069045
    Abstract: Methods and systems for thermal control of a device are disclosed having (i) a heated zone including two or more resistive sensors and (ii) a common electrode connected to each of the two or more resistive sensors. The two or more resistive sensors may be driven with heater control signals having alternating polarities. One or more portions of a thermal boundary of the heated zone may be heated by one or more thermal guard heaters.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Johnathan S. COURSEY, Kenton C. Hasson, Gregory H. Owen, Hongye Liang
  • Patent number: 8962252
    Abstract: This invention relates to systems and methods for imaging sample materials within a microfluidic device during an assay reaction process. In accordance with certain aspects of the invention, images are formed with a pixel array and a region of interest (“ROI”) is defined within the pixel array. Image values, such as fluorescent intensity, can be computed as averages of individual pixel values within the ROI. Where the ROI is subject to non-uniform conditions, such as non-uniform heating, the ROI can be divided into sub-ROIs which are sufficiently small that the condition is uniform within the sub-ROI.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 24, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Hongye Liang, Kenton C. Hasson
  • Patent number: 8852527
    Abstract: A microfluidic chip includes microfluidic channels, elements for thermally and optically isolating the microfluidic channels, and elements for enhancing the detection of optical signal emitted from the microfluidic channels. The thermal and optical isolation elements may comprise barrier channels interposed between adjacently-arranged pairs of microfluidic channels for preventing thermal and optical cross-talk between the adjacent microfluidic channels. The isolation element may alternatively comprise reflective film embedded in the microfluidic chip between the adjacent microfluidic channels. The signal enhancement elements comprise structures disposed adjacent to the microfluidic channels that reflect light passing through or emitted from the microfluidic channel in a direction toward a detector. The structures may comprise channels or a faceted surface that redirects the light by total internal reflection or reflective film material embedded in the microfluidic chip.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 7, 2014
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Bradley S. Thomas, Johnathan S. Coursey, Kenton C. Hasson, Hongye Liang
  • Publication number: 20140038191
    Abstract: This invention relates to systems and methods for imaging sample materials within a microfluidic device during an assay reaction process. In accordance with certain aspects of the invention, images are formed with a pixel array and a region of interest (“ROI”) is defined within the pixel array. Image values, such as fluorescent intensity, can be computed as averages of individual pixel values within the ROI. Where the ROI is subject to non-uniform conditions, such as non-uniform heating, the ROI can be divided into sub-ROIs which are sufficiently small that the condition is uniform within the sub-ROI.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 6, 2014
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Hongye Liang, Kenton C. Hasson
  • Patent number: 8329117
    Abstract: A microfluidic chip includes microfluidic channels, elements for thermally and optically isolating the microfluidic channels, and elements for enhancing the detection of optical signal emitted from the microfluidic channels. The thermal and optical isolation elements may comprise barrier channels interposed between adjacently-arranged pairs of microfluidic channels for preventing thermal and optical cross-talk between the adjacent microfluidic channels. The isolation element may alternatively comprise reflective film embedded in the microfluidic chip between the adjacent microfluidic channels. The signal enhancement elements comprise structures disposed adjacent to the microfluidic channels that reflect light passing through or emitted from the microfluidic channel in a direction toward a detector. The structures may comprise channels or a faceted surface that redirects the light by total internal reflection or reflective film material embedded in the microfluidic chip.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: December 11, 2012
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Bradley S. Thomas, Johnathan S. Coursey, Kenton C. Hasson, Hongye Liang
  • Publication number: 20120058460
    Abstract: The present invention, in one aspect, provides methods and systems for controlling slugs using temperature dependent fluorescent dyes. In some embodiments, the present invention uses one or more techniques to enhance the visibility of slugs, enhance a system's ability to differentiate between slugs, and enhance a system's ability to identify the positions of slugs.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 8, 2012
    Applicant: CANON U.S. LIFE SCIENCES, INC.
    Inventors: Johnathan S. Coursey, Kenton C. Hasson, Sami Kanderian, Gregory H. Owen, Hongye Liang, Scott Corey, Brian Bean
  • Publication number: 20120052563
    Abstract: This invention relates to systems and methods for imaging sample materials within a microfluidic device during an assay reaction process. In accordance with certain aspects of the invention, images are formed with a pixel array and a region of interest (“ROI”) is defined within the pixel array. Image values, such as fluorescent intensity, can be computed as averages of individual pixel values within the ROI. Where the ROI is subject to non-uniform conditions, such as non-uniform heating, the ROI can be divided into sub-ROIs which are sufficiently small that the condition is uniform within the sub-ROI.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 1, 2012
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Hongye Liang, Kenton C. Hasson
  • Patent number: D686310
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: July 16, 2013
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Conrad Laskowski, Eric Schneider, Jeremy Savage, Hongye Liang, Kenton Hasson