Patents by Inventor Hongye Sun
Hongye Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11604182Abstract: Provided is an apparatus and method for detecting grout compactness in grouted splice sleeve, the apparatus comprises a probe assembly, which comprises at least one of capacitive probe and piezoelectric sensor and is arranged inside the grouted splice sleeve to detect parameters of the sleeve during grouting and curing and a detector, which comprises at least an analysis module that is connected with the probe assembly to obtain the detected parameters and carry out calculation and analysis for the parameters. The probe assembly is arranged inside the grouted splice sleeve and forms a loop with the detector during grouting, such that during the process of grouting, the detected parameters will be changed as the surrounding dielectric changes, therefore, the detector may determine in real time whether the grouted splice sleeve is fully grouted by calculating and analyzing the detected parameters, which achieves a faster and easier grout compactness detection.Type: GrantFiled: December 15, 2020Date of Patent: March 14, 2023Assignees: GUANGZHOU MUNICIPAL ENGINEERING TESTING CO., LTD., GUANGZHOU CONSTRUCTION ENGINEERING CO., LTD., GUANGZHOU MUNICIPAL CONSTRUCTION GROUP CO., LTD.Inventors: Mengxiong Tang, Zhiguo Zhou, Xiaoli Sun, Hongye Wang, Jun Yang, Hesong Hu, Wuyang Zhou, Decun Bian, Yayu Zhao, Jixi Shao, Ducheng Guo, Hongbin Zhao
-
Patent number: 11447756Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: GrantFiled: March 20, 2020Date of Patent: September 20, 2022Assignee: LIFE TECHNOLOGIES CORPORATIONInventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
-
Publication number: 20220049119Abstract: The present invention relates to highly conductive, printable inks for highly stretchable soft electronics, a process for their manufacture as well as highly conductive, ultra-stretchable conductors obtainable therefrom.Type: ApplicationFiled: February 14, 2020Publication date: February 17, 2022Inventors: Hongye SUN, Norbert WILLENBACHER
-
Publication number: 20220025201Abstract: The present invention relates to highly conductive, printable inks for highly stretchable soft electronics, a process for their manufacture as well as a process for producing highly stretchable soft electronics.Type: ApplicationFiled: September 24, 2019Publication date: January 27, 2022Inventors: Hongye SUN, Norbert WILLENBACHER, Zongyou HAN
-
Publication number: 20220026365Abstract: A scanning detection system is provided wherein emissions from locations in a flow cell are detected. In some embodiments, the system can comprise an excitation source, a photocleavage source, and modulating optics configured to cause an excitation beam generated by the excitation source to irradiate a first group of the fixed locations and to cause a photocleavage beam generated by the photocleavage source to irradiate a second group of the fixed locations, which is separate and apart from the first group of fixed locations. Methods of detecting sequencing reactions using such a system are also provided.Type: ApplicationFiled: July 16, 2021Publication date: January 27, 2022Inventors: Mark F. Oldham, Eric S. Nordman, Hongye Sun, Steven Boege
-
Publication number: 20210371919Abstract: A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.Type: ApplicationFiled: March 29, 2021Publication date: December 2, 2021Inventors: Hongye SUN, Steven FUNG, Sam Lee WOO
-
Patent number: 11092548Abstract: A scanning detection system is provided wherein emissions from locations in a flow cell are detected. In some embodiments, the system can comprise an excitation source, a photocleavage source, and modulating optics configured to cause an excitation beam generated by the excitation source to irradiate a first group of the fixed locations and to cause a photocleavage beam generated by the photocleavage source to irradiate a second group of the fixed locations, which is separate and apart from the first group of fixed locations. Methods of detecting sequencing reactions using such a system are also provided.Type: GrantFiled: October 9, 2018Date of Patent: August 17, 2021Assignee: Life Technologies CorporationInventors: Mark F. Oldham, Eric S. Nordman, Hongye Sun, Steven Boege
-
Patent number: 10961575Abstract: A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.Type: GrantFiled: September 13, 2019Date of Patent: March 30, 2021Assignee: APPLIED BIOSYSTEMS, LLCInventors: Hongye Sun, Steven Fung, Sam Lee Woo
-
Publication number: 20200231948Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: ApplicationFiled: March 20, 2020Publication date: July 23, 2020Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
-
Publication number: 20200140942Abstract: A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.Type: ApplicationFiled: September 13, 2019Publication date: May 7, 2020Inventors: Hongye SUN, Steven FUNG, Sam Lee WOO
-
Patent number: 10597642Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: GrantFiled: August 30, 2017Date of Patent: March 24, 2020Assignee: Life Technologies CorporationInventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
-
Patent number: 10415090Abstract: A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.Type: GrantFiled: March 3, 2017Date of Patent: September 17, 2019Assignee: APPLIED BIOSYSTEMS, LLCInventors: Hongye Sun, Steven Fung, Sam Lee Woo
-
Publication number: 20190086334Abstract: A scanning detection system is provided wherein emissions from locations in a flow cell are detected. In some embodiments, the system can comprise an excitation source, a photocleavage source, and modulating optics configured to cause an excitation beam generated by the excitation source to irradiate a first group of the fixed locations and to cause a photocleavage beam generated by the photocleavage source to irradiate a second group of the fixed locations, which is separate and apart from the first group of fixed locations. Methods of detecting sequencing reactions using such a system are also provided.Type: ApplicationFiled: October 9, 2018Publication date: March 21, 2019Inventors: Mark F. OLDHAM, Eric S. NORDMAN, Hongye SUN, Steven BOEGE
-
Patent number: 10107758Abstract: A scanning detection system is provided wherein emissions from locations in a flow cell are detected. In some embodiments, the system can comprise an excitation source, a photocleavage source, and modulating optics configured to cause an excitation beam generated by the excitation source to irradiate a first group of the fixed locations and to cause a photocleavage beam generated by the photocleavage source to irradiate a second group of the fixed locations, which is separate and apart from the first group of fixed locations. Methods of detecting sequencing reactions using such a system are also provided.Type: GrantFiled: July 3, 2014Date of Patent: October 23, 2018Assignee: Life Technologies CorporationInventors: Mark F. Oldham, Eric S. Nordman, Hongye Sun, Steven J. Boege
-
Publication number: 20170369857Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: ApplicationFiled: August 30, 2017Publication date: December 28, 2017Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
-
Patent number: 9765310Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: GrantFiled: January 8, 2016Date of Patent: September 19, 2017Assignee: Life Technologies CorporationInventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
-
Publication number: 20170175185Abstract: A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.Type: ApplicationFiled: March 3, 2017Publication date: June 22, 2017Inventors: Hongye SUN, Steven Fung, Sam Lee Woo
-
Patent number: 9587277Abstract: A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.Type: GrantFiled: January 18, 2016Date of Patent: March 7, 2017Assignee: Applied Biosystems, LLCInventors: Hongye Sun, Steven Fung, Sam Lee Woo
-
Patent number: 9528152Abstract: In some embodiments, an analyte detection system is provided that includes a nanochannel, an electrode arrangement, and a plurality of nanoFET devices disposed in the nanochannel. A plurality of nucleic acid base detection components can be used that include a plurality of nanopores, a plurality of nanochannels, a plurality of hybridization probes, combinations thereof, and the like. According to other embodiments of the present teachings, different coded molecules are hybridized to a target DNA molecule and used to detect the presence of various sequences along the target molecule. A kit including mixtures of coded molecules is also provided. In some embodiments, devices including nanochannels, nanopores, and the like, are used for manipulating movement of DNA molecules, for example, in preparation for a DNA sequencing detection. Nanopore structures and methods of making the same are also provided as are methods of nucleic acid sequencing using the nanopore structures.Type: GrantFiled: December 2, 2014Date of Patent: December 27, 2016Assignee: Life Technologies CorporationInventors: Hongye Sun, Mark F. Oldham, John O'Neill, Charles R. Connell, Umberto Ulmanella, Aldrich N. K. Lau, Theo Kotseroglou, Kenneth J. Livak
-
Publication number: 20160208318Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: ApplicationFiled: January 8, 2016Publication date: July 21, 2016Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan