Patents by Inventor Hooman Shayani

Hooman Shayani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977960
    Abstract: In various embodiments, a workflow application generates and evaluates designs that reflect stylistic preferences. In operation, the workflow application determines a target style based on input received via a graphical user interface (GUI). Notably, the target style characterizes a first set of designs. The workflow application then generates stylized design(s) based on stylization algorithm(s) associated with the target style. Subsequently, the workflow application, displays a subset of the stylized design(s) via the GUI. A stylized design included in the subset of stylized design(s) is ultimately selected for production via the GUI. Advantageously, because the workflow application can substantially increase the number of designs that can be generated and evaluated based on the target style in a given amount of time, relative to more manual prior art techniques, the overall quality of the stylized design selected for production can be improved.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: May 7, 2024
    Assignee: AUTODESK, INC.
    Inventors: Hooman Shayani, Mark Thomas Davis
  • Patent number: 11947334
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes, where three dimensional (3D) models of the physical structures can be produced to include lattices, hollows, holes, and combinations thereof, include: obtaining design criteria for an object; iteratively modifying 3D topology and shape(s) for the object using generative design process(es) that employ a macrostructure representation, e.g., using level-set method(s), in combination with physical simulation(s) that place void(s) in solid region(s) or solid(s) in void region(s) of the generative model of the object; and providing a 3D model of the generative design for the object for use in manufacturing a physical structure corresponding to the object using one or more computer-controlled manufacturing systems.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: April 2, 2024
    Assignee: Autodesk, Inc.
    Inventors: Konara Mudiyanselage Kosala Bandara, Karl Darcy Daniel Willis, Andrew John Harris, Andriy Banadyha, Daniele Grandi, Adrian Adam Thomas Butscher, Andreas Linas Bastian, Hooman Shayani
  • Patent number: 11900029
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for designing three dimensional lattice structures include, in one aspect, a method including: obtaining a mechanical problem definition including a 3D model of an object; generating a numerical simulation model for the 3D model of the object using one or more loading cases and one or more isotropic solid materials identified as a baseline material model for a design space; predicting performance of different lattice settings in different orientations in the design space using a lattice structural behavior model in place of the baseline material model in the numerical simulation model; and presenting a set of lattice proposals for the design space based on the predicted performance of the different lattice settings in the different orientations; wherein the lattice structural behavior model has been precomputed for the different lattice settings, which are generable by the 3D modeling program.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: February 13, 2024
    Assignee: Autodesk, Inc.
    Inventors: Konara Mudiyanselage Kosala Bandara, Hooman Shayani
  • Patent number: 11861461
    Abstract: In various embodiments, a stylization application generates designs that reflect stylistic preferences. In operation, the stylization application computes characterization information based on a first design and a trained machine-learning model that maps one or more designs to characterization information associated with one or more styles. The stylization application then computes a style score based on the characterization information and a target style that is included in the one or more styles. Subsequently, the stylization application generates a second design based on the style score, where the second design is more representative of the target style than the first design. Advantageously, because the stylization application can substantially increase the number of designs that can be generated based on the target style in a given amount of time, relative to more manual prior art techniques, the overall quality of the design ultimately selected for production can be improved.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: January 2, 2024
    Assignee: AUTODESK, INC.
    Inventors: Hooman Shayani, Mark Thomas Davis
  • Publication number: 20230326158
    Abstract: One embodiment of the present invention sets forth a technique for training a machine learning model to perform style transfer. The technique includes applying one or more augmentations to a first input three-dimensional (3D) shape to generate a second input 3D shape. The technique also includes generating, via a first set of neural network layers, a style code based on a first latent representation of the first input 3D shape and a second latent representation of the second input 3D shape. The technique further includes generating, via a second set of neural network layers, a first output 3D shape based on the style code and the second latent representation, and performing one or more operations on the first and second sets of neural network layers based on a first loss associated with the first output 3D shape to generate a trained machine learning model.
    Type: Application
    Filed: January 3, 2023
    Publication date: October 12, 2023
    Inventors: Hooman SHAYANI, Marco FUMERO, Aditya SANGHI
  • Publication number: 20230326157
    Abstract: One embodiment of the present invention sets forth a technique for performing style transfer. The technique includes generating an input shape representation that includes a plurality of points near a surface of an input three-dimensional (3D) shape, where the input 3D shape includes content-based attributes associated with an object. The technique also includes determining a style code based on a difference between a first latent representation of a first 3D shape and a second latent representation of a second 3D shape, where the second 3D shape is generated by applying one or more augmentations to the first 3D shape. The technique further includes generating, based on the input shape representation and style code, an output 3D shape having the content-based attributes of the input 3D shape and style-based attributes associated with the style code, and generating a 3D model of the object based on the output 3D shape.
    Type: Application
    Filed: January 3, 2023
    Publication date: October 12, 2023
    Inventors: Hooman SHAYANI, Marco FUMERO, Aditya SANGHI
  • Publication number: 20230326159
    Abstract: One embodiment of the present invention sets forth a technique for performing style transfer. The technique includes determining a distribution associated with a plurality of style codes for a plurality of three-dimensional (3D) shapes, where each style code included in the plurality of style codes represents a difference between a first 3D shape and a second 3D shape, and where the second 3D shape is generated by applying one or more augmentations to the first 3D shape. The technique also includes sampling from the distribution to generate an additional style code and executing a trained machine learning model based on the additional style code to generate an output 3D shape having style-based attributes associated with the additional style code and content-based attributes associated with an object. The technique further includes generating a 3D model of the object based on the output 3D shape.
    Type: Application
    Filed: January 3, 2023
    Publication date: October 12, 2023
    Inventors: Hooman SHAYANI, Marco FUMERO, Aditya SANGHI
  • Publication number: 20230237219
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for designing three dimensional lattice structures include, in one aspect, a method including: obtaining a mechanical problem definition including a 3D model of an object; generating a numerical simulation model for the 3D model of the object using one or more loading cases and one or more isotropic solid materials identified as a baseline material model for a design space; predicting performance of different lattice settings in different orientations in the design space using a lattice structural behavior model in place of the baseline material model in the numerical simulation model; and presenting a set of lattice proposals for the design space based on the predicted performance of the different lattice settings in the different orientations; wherein the lattice structural behavior model has been precomputed for the different lattice settings, which are generable by the 3D modeling program.
    Type: Application
    Filed: March 30, 2023
    Publication date: July 27, 2023
    Inventors: Konara Mudiyanselage Kosala Bandara, Hooman Shayani
  • Patent number: 11704456
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for designing three dimensional lattice structures include, in one aspect, a method including: obtaining a mechanical problem definition including a 3D model of an object; generating a numerical simulation model for the 3D model of the object using one or more loading cases and one or more isotropic solid materials identified as a baseline material model for a design space; predicting performance of different lattice settings in different orientations in the design space using a lattice structural behavior model in place of the baseline material model in the numerical simulation model; and presenting a set of lattice proposals for the design space based on the predicted performance of the different lattice settings in the different orientations; wherein the lattice structural behavior model has been precomputed for the different lattice settings, which are generable by the 3D modeling program.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: July 18, 2023
    Assignee: Autodesk, Inc.
    Inventors: Konara Mudiyanselage Kosala Bandara, Hooman Shayani
  • Patent number: 11663779
    Abstract: In various embodiments, a stylization subsystem automatically modifies a three-dimensional (3D) object design. In operation, the stylization subsystem generates a simplified quad mesh based on an input triangle mesh that represents the 3D object design, a preferred orientation associated with at least a portion of the input triangle mesh, and mesh complexity constraint(s). The stylization subsystem then converts the simplified quad mesh to a simplified T-spline. Subsequently, the stylization subsystem creases one or more of edges included in the simplified T-spline to generate a stylized T-spline. Notably, the stylized T-spline represents a stylized design that is more convergent with the preferred orientation(s) than the 3D object design. Advantageously, relative to prior art approaches, the stylization subsystem can more efficiently modify the 3D object design to improve overall aesthetics and manufacturability.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: May 30, 2023
    Assignee: AUTODESK, INC.
    Inventors: Hooman Shayani, Mark Thomas Davis, Andriy Banadyha, Stephen Barley
  • Publication number: 20230056614
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
    Type: Application
    Filed: September 14, 2022
    Publication date: February 23, 2023
    Inventors: Karl Darcy Daniel Willis, Nigel Jed Wesley Morris, Andreas Linas Bastian, Adrian Adam Thomas Butscher, Daniele Grandi, Suguru Furuta, Joseph George Lambourne, Tristan Ward Barback, Martin Cvetanov Marinov, Marco Amagliani, Jingyang John Chen, Michael Andrew Smell, Brian M. Frank, Hooman Shayani, Christopher Michael Wade, Nandakumar Santhanam
  • Publication number: 20220318636
    Abstract: In various embodiments, a training application trains machine learning models to perform tasks associated with 3D CAD objects that are represented using B-reps. In operation, the training application computes a preliminary result via a machine learning model based on a representation of a 3D CAD object that includes a graph and multiple 2D UV-grids. Based on the preliminary result, the training application performs one or more operations to determine that the machine learning model has not been trained to perform a first task. The training application updates at least one parameter of a graph neural network included in the machine learning model based on the preliminary result to generate a modified machine learning model. The training application performs one or more operations to determine that the modified machine learning model has been trained to perform the first task.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 6, 2022
    Inventors: Pradeep Kumar JAYARAMAN, Thomas Ryan DAVIES, Joseph George LAMBOURNE, Nigel Jed Wesley MORRIS, Aditya SANGHI, Hooman SHAYANI
  • Publication number: 20220318466
    Abstract: In various embodiments, a parameter domain graph application generates UV-net representations of 3D CAD objects for machine learning models. In operation, the parameter domain graph application generates a graph based on a B-rep of a 3D CAD object. The parameter domain graph application discretizes a parameter domain of a parametric surface associated with the B-rep into a 2D grid. The parameter domain graph application computes at least one feature at a grid point included in the 2D grid based on the parametric surface to generate a 2D UV-grid. Based on the graph and the 2D UV-grid, the parameter domain graph application generates a UV-net representation of the 3D CAD object. Advantageously, generating UV-net representations of 3D CAD objects that are represented using B-reps enables the 3D CAD objects to be processed efficiently using neural networks.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 6, 2022
    Inventors: Pradeep Kumar JAYARAMAN, Thomas Ryan DAVIES, Joseph George LAMBOURNE, Nigel Jed Wesley MORRIS, Aditya SANGHI, Hooman SHAYANI
  • Publication number: 20220318637
    Abstract: In various embodiments, an inference application performs tasks associated with 3D CAD objects that are represented using B-reps. A UV-net representation of a 3D CAD object that is represented using a B-rep includes a set of 2D UV-grids and a graph. In operation, the inference application maps the set of 2D UV-grids to a set of node feature vectors via a trained neural network. Based on the node feature vectors and the graph, the inference application computes a final result via a trained graph neural network. Advantageously, the UV-net representation of the 3D CAD object enabled the trained neural network and the trained graph neural network to efficiently process the 3D CAD object.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 6, 2022
    Inventors: Pradeep Kumar JAYARAMAN, Thomas Ryan DAVIES, Joseph George LAMBOURNE, Nigel Jed Wesley MORRIS, Aditya SANGHI, Hooman SHAYANI
  • Patent number: 11455435
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: September 27, 2022
    Assignee: Autodesk, Inc.
    Inventors: Karl Darcy Daniel Willis, Nigel Jed Wesley Morris, Andreas Linas Bastian, Adrian Adam Thomas Butscher, Daniele Grandi, Suguru Furuta, Joseph George Lambourne, Tristan Ward Barback, Martin Cvetanov Marinov, Marco Amagliani, Jingyang John Chen, Michael Andrew Smell, Brian M. Frank, Hooman Shayani, Christopher Michael Wade, Nandakumar Santhanam
  • Publication number: 20220156415
    Abstract: In various embodiments, a style comparison metric application generates a style comparison metric for pairs of different three dimensional (3D) computer-aided design (CAD) objects. In operation, the style comparison metric application executes a trained neural network any number of times to map 3D CAD objects to feature maps. Based on the feature maps, the style comparison metric application computes style signals. The style comparison metric application determines values for weights based on the style signals. The style comparison metric application generates the style comparison metric based on the weights and a parameterized style comparison metric.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 19, 2022
    Inventors: Peter MELTZER, Amir Hosein KHAS AHMADI, Pradeep Kumar JAYARAMAN, Joseph George LAMBOURNE, Aditya SANGHI, Hooman SHAYANI
  • Publication number: 20220156420
    Abstract: In various embodiments, a style comparison application generates visualization(s) of geometric style gradient(s). The style comparison application generates a first set of style signals based on a first 3D CAD object and generates a second set of style signals based on a second 3D CAD object. Based on the first and second sets of style signals, the style comparison application computes a different partial derivative of a style comparison metric for each position included in a set of positions associated with the first 3D CAD object to generate a geometric style gradient. The style comparison application generates a graphical element based on at least one of the direction or the magnitude of a vector in the geometric style gradient and positions the graphical element relative to a graphical representation of the first 3D CAD object within a graphical user interface to generate a visualization of the geometric style gradient.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 19, 2022
    Inventors: Peter MELTZER, Amir Hosein KHAS AHMADI, Pradeep Kumar JAYARAMAN, Joseph George LAMBOURNE, Aditya SANGHI, Hooman SHAYANI
  • Publication number: 20220156434
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design and manufacture of physical structures include, in at least one aspect, a method including: obtaining a design space for a modeled object, load cases for physical simulation, and design criteria, wherein the modeled object includes specified geometry with which generatively designed geometry will connect, and wherein the load cases include at least one in-use load case for the physical structure and at least one subtractive-manufacturing load case associated with the specified geometry and with a subtractive manufacturing system; producing the generatively designed geometry in the design space for the modelled object in accordance with the load cases for physical simulation of the modelled object and the design criteria for the modeled object; and providing the modeled object with the generatively designed geometry for use in manufacturing the physical structure.
    Type: Application
    Filed: December 10, 2021
    Publication date: May 19, 2022
    Inventors: Martin Raymond Razzell, Luke Edwards, Nathan David Rogers, Hooman Shayani
  • Publication number: 20220156416
    Abstract: In various embodiments, a style comparison application compares geometric styles of different three dimensional (3D) computer-aided design (CAD) objects. In operation, the style comparison application executes a trained neural network one or more times to map 3D CAD objects to feature map sets. The style comparison application computes a first set of style signals based on a first feature set included in the feature map sets. The style comparison application computes a second set of style signals based on a second feature set included in the feature map sets. Based on the first set of style signals and the second set of style signals, the style comparison application determines a value for a style comparison metric. The value for the style comparison metric quantifies a similarity or a dissimilarity in geometric style between a first 3D CAD object and a second 3D CAD object.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 19, 2022
    Inventors: Peter MELTZER, Amir Hosein KHAS AHMADI, Pradeep Kumar JAYARAMAN, Joseph George LAMBOURNE, Aditya SANGHI, Hooman SHAYANI
  • Publication number: 20220076488
    Abstract: In various embodiments, a stylization subsystem automatically modifies a three-dimensional (3D) object design. In operation, the stylization subsystem generates a simplified quad mesh based on an input triangle mesh that represents the 3D object design, a preferred orientation associated with at least a portion of the input triangle mesh, and mesh complexity constraint(s). The stylization subsystem then converts the simplified quad mesh to a simplified T-spline. Subsequently, the stylization subsystem creases one or more of edges included in the simplified T-spline to generate a stylized T-spline. Notably, the stylized T-spline represents a stylized design that is more convergent with the preferred orientation(s) than the 3D object design. Advantageously, relative to prior art approaches, the stylization subsystem can more efficiently modify the 3D object design to improve overall aesthetics and manufacturability.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Hooman SHAYANI, Mark Thomas DAVIS, Andriy BANADYHA, Stephen BARLEY