Patents by Inventor Hoosweng Ow

Hoosweng Ow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9625456
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as polyethylene glycol) (PEG) The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo The nanoparticle may further be conjugated to a ligand capable of binding to a cellular component associated with the specific cell type, such as a tumor marker A therapeutic agent may be attached to the nanoparticle Radionuclides/radiometals or paramagnetic ions may be conjugated to the nanoparticle to permit the nanoparticle to be detectable by various imaging techniques.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 18, 2017
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle Bradbury, Ulrich Wiesner, Oula Penate Medina, Hoosweng Ow, Andrew Burns, Jason Lewis, Steven Larson
  • Publication number: 20130039848
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as polyethylene glycol) (PEG) The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo The nanoparticle may further be conjugated to a ligand capable of binding to a cellular component associated with the specific cell type, such as a tumor marker A therapeutic agent may be attached to the nanoparticle Radionuclides/radiometals or paramagnetic ions may be conjugated to the nanoparticle to permit the nanoparticle to be detectable by various imaging techniques.
    Type: Application
    Filed: July 2, 2010
    Publication date: February 14, 2013
    Applicants: CORNELL UNIVERSITY, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: Michelle Bradbury, Ulrich Wiesner, Oula Penate Medina, Hoosweng Ow, Andrew Burns, Jason Lewis, Steven Larson