Patents by Inventor Horacio Trevino

Horacio Trevino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7655137
    Abstract: The reforming catalysts include a halogen promoter and a plurality of nanocatalyst particles supported on a support material. The nanocatalyst particles have a controlled crystal face exposure of predominately (110). The controlled coordination structure is manufactured by reacting a plurality of catalyst atoms with a control agent such as polyacrylic acid and causing or allowing the catalyst atoms to form nanocatalyst particles. The catalysts are used in a reforming reaction to improve the octane number of gasoline feedstock. The reforming catalysts show improved C5+ hydrocarbon production and improved octane barrel number increases as compared to commercially available reforming catalysts.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 2, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu
  • Patent number: 7569508
    Abstract: Reforming nanocatalysts are formed using a dispersing agent to increase the activity, selectivity and longevity of the catalyst when used in a reforming process. The nanocatalyst particles are formed using a dispersing agent having at least one functional group selected from the group of a hydroxyl, a carboxyl, a carbonyl, an amide, an amine, a thiol, a sulfonic acid, sulfonyl halide, an acyl halide, an organometallic complex, and combinations of these. The dispersing agent is particularly useful for forming multicomponent catalysts comprising an alloy, combination, mixture, decoration, or interspersion of platinum and one or more of tin, rhenium or iridium. The formation of the nanoparticles may include a heat treating process performed in an inert or oxidative environment to maintain the catalyst atoms in a non-zero oxidation state to thereby maintain a stronger bond between the dispersing agent and the catalyst atoms.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: August 4, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Horacio Treviño, Zhihua Wu, Zhenhua Zhou, Changkun Liu
  • Patent number: 7563742
    Abstract: Supported nickel catalyst having high nickel loading and dispersion are manufactured using a dispersing agent. The dispersing agent molecules include at least one functional group that bonds with the nickel atoms and influences nanoparticle formation. The support material is loaded with at least about 5% nickel, more preferably at least about 8%, and most preferably at least about 12% by weight of the total catalyst. Catalysts manufactured using the organic dispersing agents and loaded with the foregoing amounts of nickel have metal dispersions greater than about 5% as measured by hydrogen adsorption, more preferably greater than about 10%, and most preferably greater than about 15%.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: July 21, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Clementine Reyes, Martin Fransson, Horacio Treviño, Bing Zhou
  • Patent number: 7541309
    Abstract: Catalysts suitable for use in reforming hydrocarbons have a halogen promoter and a plurality of dispersed nanocatalyst particles supported on a solid support. The dispersed nanocatalyst particles are manufactured using a dispersing agent to control the size and/or crystal face exposure of the particles. The controlled size and dispersion of the nanocatalyst particles allows the reforming catalyst to be loaded with significantly less halogen promoter while still maintaining or increasing the catalyst's reforming performance. The catalysts of the present invention have shown improved C5+ production with the significantly reduced levels of halogen promoter.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 2, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Horacio Trevino, Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Publication number: 20090114568
    Abstract: Catalysts suitable for use in reforming hydrocarbons have a halogen promoter and a plurality of dispersed nanocatalyst particles supported on a solid support. The dispersed nanocatalyst particles are manufactured using a dispersing agent to control the size and/or crystal face exposure of the particles. The controlled size and dispersion of the nanocatalyst particles allows the reforming catalyst to be loaded with significantly less halogen promoter while still maintaining or increasing the catalyst's reforming performance. The catalysts of the present invention have shown improved C5+ production with the significantly reduced levels of halogen promoter.
    Type: Application
    Filed: May 16, 2006
    Publication date: May 7, 2009
    Inventors: Horacio Trevino, Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Publication number: 20090112010
    Abstract: A catalyst precursor composition and methods for making such a catalyst precursor are disclosed. The catalyst precursor comprises at least a promoter metal selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof having an oxidation state of +2 or +4, at least one Group VIB metal having an oxidation state of +6, and at least one organic oxygen-containing ligand. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds.
    Type: Application
    Filed: October 28, 2008
    Publication date: April 30, 2009
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Horacio Trevino
  • Patent number: 7449423
    Abstract: A catalyst manufacturing process includes heat treating an intermediate catalyst composition that includes catalyst nanoparticles having catalyst atoms in a non-zero oxidation state bonded to a dispersing/anchoring agent. The catalyst nanoparticles are formed using a dispersing agent having at least one functional group selected from the group of a hydroxyl, a carboxyl, a carbonyl, an amide, an amine, a thiol, a sulfonic acid, sulfonyl halide, an acyl halide, an organometallic complex, and combinations of these. The dispersing agent can be used to form single- or multicomponent supported nanocatalysts. The dispersing agent also acts as an anchoring agent to firmly bond the nanocatalyst to a support. Performing the heat treating process in an inert or oxidative environment to maintain the catalyst atoms in a non-zero oxidation helps maintains a stronger bonding interaction between the dispersing agent and the catalyst atoms.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: November 11, 2008
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu, Zhenhua Zhou, Changkun Liu
  • Publication number: 20060243641
    Abstract: The reforming catalysts include a halogen promoter and a plurality of nanocatalyst particles supported on a support material. The nanocatalyst particles have a controlled crystal face exposure of predominately (110). The controlled coordination structure is manufactured by reacting a plurality of catalyst atoms with a control agent such as polyacrylic acid and causing or allowing the catalyst atoms to form nanocatalyst particles. The catalysts are used in a reforming reaction to improve the octane number of gasoline feedstock. The reforming catalysts show improved C5+ hydrocarbon production and improved octane barrel number increases as compared to commercially available reforming catalysts.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 2, 2006
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu
  • Publication number: 20060160695
    Abstract: A catalyst manufacturing process includes heat treating an intermediate catalyst composition that includes catalyst nanoparticles having catalyst atoms in a non-zero oxidation state bonded to a dispersing/anchoring agent. The catalyst nanoparticles are formed using a dispersing agent having at least one functional group selected from the group of a hydroxyl, a carboxyl, a carbonyl, an amide, an amine, a thiol, a sulfonic acid, sulfonyl halide, an acyl halide, an organometallic complex, and combinations of these. The dispersing agent can be used to form single- or multicomponent supported nanocatalysts. The dispersing agent also acts as an anchoring agent to firmly bond the nanocatalyst to a support. Performing the heat treating process in an inert or oxidative environment to maintain the catalyst atoms in a non-zero oxidation helps maintains a stronger bonding interaction between the dispersing agent and the catalyst atoms.
    Type: Application
    Filed: April 7, 2005
    Publication date: July 20, 2006
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu, Zhenhua Zhou, Changkun Liu
  • Publication number: 20060102521
    Abstract: Reforming nanocatalysts are formed using a dispersing agent to increase the activity, selectivity and longevity of the catalyst when used in a reforming process. The nanocatalyst particles are formed using a dispersing agent having at least one functional group selected from the group of a hydroxyl, a carboxyl, a carbonyl, an amide, an amine, a thiol, a sulfonic acid, sulfonyl halide, an acyl halide, an organometallic complex, and combinations of these. The dispersing agent is particularly useful for forming multicomponent catalysts comprising an alloy, combination, mixture, decoration, or interspersion of platinum and one or more of tin, rhenium or iridium. The formation of the nanoparticles may include a heat treating process performed in an inert or oxidative environment to maintain the catalyst atoms in a non-zero oxidation state to thereby maintain a stronger bond between the dispersing agent and the catalyst atoms.
    Type: Application
    Filed: April 7, 2005
    Publication date: May 18, 2006
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu, Zhenhua Zhou, Changkun Liu