Patents by Inventor Horst Schreiber

Horst Schreiber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150219805
    Abstract: An expanded cold mirror is provided. The mirror includes a substrate and a coating deposited on the substrate. The coating includes a first coating stack comprising at least one period of a low refractive index metal oxide coating layer and a high refractive index metal oxide coating layer, a second coating stack comprising at least one period of a low refractive index metal fluoride coating layer and a high refractive index metal oxide layer, and a third coating stack comprising at least one period of a low refractive index metal fluoride coating layer and a high refractive index metal fluoride coating layer.
    Type: Application
    Filed: January 22, 2015
    Publication date: August 6, 2015
    Inventors: Horst Schreiber, Jue Wang
  • Patent number: 8817367
    Abstract: The disclosure is directed to multilayer Mo/Si coatings for reflective mirrors used in extreme ultraviolet lithographic systems and to a method of making such mirrors using plasma ion assisted deposition (PIAD) techniques. The coating are deposited on a substrate suitable for EUV lithography, and are Mo/Si coating consisting of 40-100 Mo/Si periods, each period consisting on a Mo layer followed by a Si layer. Each of the individual Mo and Si layers is deposited to a specified or target thickness in the range of 2 nm to 5 nm, and the thicknesses are controlled to ±0.1 nm. A plasma from a plasma source is used to densify and smooth the substrate prior to deposition of the coating, and each layer of the coating is plasma densified and smoothed.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: August 26, 2014
    Assignee: Corning Incorporated
    Inventors: Horst Schreiber, Jue Wang
  • Publication number: 20130321922
    Abstract: The disclosure is directed to a coating consisting of a binary metal fluoride coating consisting a high refractive index metal fluoride layer on top of a substrate, a low refractive index metal fluoride layer on top of the high refractive index layer and layer of SiO2 or F—SiO2 containing 0.2 wt % to 4.5 (2000 ppm to 45,000 ppm) F on top of the low refractive index layer. In one embodiment the F content of F—SiO2 is in the range of 5000 ppm to 10,000 ppm F. The high index and low index materials are each deposited to a thickness of less than or equal to 0.9 quarter wave, and the capping material is deposited to a thickness in the range of 5 nm to 25 nm. The disclosure is also directed to optical elements having the foregoing coating and a method of making the coating.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 5, 2013
    Applicant: Corning Incorporated
    Inventors: Michael Jerome Cangemi, Paul Gerard Dewa, Joseph D. Malach, Paul Francis Michaloski, Horst Schreiber, Jue Wang
  • Publication number: 20130314773
    Abstract: The disclosure is directed to multilayer Mo/Si coatings for reflective mirrors used in extreme ultraviolet lithographic systems and to a method of making such mirrors using plasma ion assisted deposition (PIAD) techniques. The coating are deposited on a substrate suitable for EUV lithography, and are Mo/Si coating consisting of 40-100 Mo/Si periods, each period consisting on a Mo layer followed by a Si layer. Each of the individual Mo and Si layers is deposited to a specified or target thickness in the range of 2 nm to 5 nm, and the thicknesses are controlled to ±0.1 nm. A plasma from a plasma source is used to densify and smooth the substrate prior to deposition of the coating, and each layer of the coating is plasma densified and smoothed.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: Corning Incorporated
    Inventors: Horst Schreiber, Jue Wang
  • Patent number: 8526104
    Abstract: The disclosure is directed to multilayer Mo/Si coatings for reflective mirrors used in extreme ultraviolet lithographic systems and to a method of making such mirrors using plasma ion assisted deposition (PIAD) techniques. The coating are deposited on a substrate suitable for EUV lithography, and are Mo/Si coating consisting of 40-100 Mo/Si periods, each period consisting on a Mo layer followed by a Si layer. Each of the individual Mo and Si layers is deposited to a specified or target thickness in the range of 2 nm to 5 nm, and the thicknesses are controlled to ±0.1 nm. A plasma from a plasma source is used to densify and smooth the substrate prior to deposition of the coating, and each layer of the coating is plasma densified and smoothed.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Corning Incorporated
    Inventors: Horst Schreiber, Jue Wang
  • Publication number: 20130135712
    Abstract: The disclosure is directed to a method of making yttrium oxide, Y2O3, coatings on substrates suitable for use at infrared wavelengths, including use in the 2-12 ?m range. The coating method eliminates or substantially eliminates the absorptions peaks that typically appear at approximately 3.0 ?m, 6.6 ?m and 7.1 ?m. This is achieved by using Y metal as the yttrium source in combination with an oxygen-containing plasma to form the Y2O3, coating in place of the using Y2O3 as the coating material source The disclosure is further directed to optics suitable for use in the infrared that have such coatings. The transmission spectrum of the coated substrate made according to the method described herein is greater than the transmission spectrum of the uncoated substrate over the wavelength range of 4 ?m to 12 ?m.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 30, 2013
    Inventors: Horst Schreiber, Jue Wang, Scott J. Wilkinson
  • Patent number: 8399110
    Abstract: The invention is directed to single crystal alkaline earth metal fluoride optical elements having an adhesive, hermetic coating thereon, the coating being chemically bonded to the surface of the metal fluoride optical element with a bonding energy ?4 eV and not merely bonded by van der Walls forces. The materials that can be used for coating the optical elements are selected from the group consisting of SiO2, F—SiO2, Al2O3, F—Al2O3, SiON, HfO2, Si3N4, TiO2 and ZrO2, and mixtures (of any composition) of the foregoing, for example, SiO2; HfO2 and F—SiO2/ZrO2. The preferred alkali earth metal fluoride used for the optical elements is CaF2. Preferred coatings are SiO2, F—SiO2, SiO2/ZrO2 and F—SiO2/ZrO2.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: March 19, 2013
    Assignee: Corning Incorporated
    Inventors: Michael J Cangemi, Horst Schreiber, Jue Wang
  • Patent number: 8335045
    Abstract: This disclosure is directed to an optical element and method in which a UV-curable adhesive, used along the edge of the optic to keep it in a holder, has been stabilized against degradation by below 300 nm radiation. The technical solution to the degradation of the adhesive includes both 193 nm scatter light reduction and protective coatings of plasma modified AlF3 films on at least that part of the optical element that is in contact with the adhesive.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 18, 2012
    Assignee: Corning Incorporated
    Inventors: Horst Schreiber, Jue Wang
  • Publication number: 20120307353
    Abstract: This disclosure is directed to an optic having a composited MgO—MgF2 infrared anti-reflective coating that is suitable for use in LWIR, MWIR and SWIR ranges, and is particularly suitable for use in the LWIR range. The coated optic disclosed herein passes the severe abrasion test with a barring force between 2 pounds and 2.5 pounds. The MgO—MgF2 infrared anti-reflective coating has a thickness in the range of 500 nm to 1500 nm and a reflectance value Rx at 12° of less than 2% in the wavelength range of 7.25 nm to 11.75 nm.
    Type: Application
    Filed: May 18, 2012
    Publication date: December 6, 2012
    Inventors: Horst Schreiber, Jue Wang, Scott J. Wilkinson
  • Patent number: 8183536
    Abstract: High-power excimer lasers are assembled with individually replaceable optical module subsystems containing consumable optical components. Windows formed in the enclosures of the optical modules incorporate a fluorescent material for converting ultraviolet light scattered from the components of the optical module into visible light emanating from the windows. Changes in the amount or location of the visible light emanating from the windows are interpreted as indications of the degradation in the performance of the optical modules.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 22, 2012
    Assignee: Corning Incorporated
    Inventors: Horst Schreiber, Paul Michael Then
  • Patent number: 8179944
    Abstract: The disclosure is directed to a thin-film for use in below 300 nm laser systems that can be applied to a variety of substrate types. The thin film consists of a blocking layer of a selected material and a matching structure, the matching structure consisting of 1-7 layers of a selected material. The blocking layer serves to minimize or eliminate the transmission of below 300 nm laser light into an adhesive that is used to bond the substrate to a holder. The matching layer(s) minimize internal reflectance of below 300 nm laser light from the blocking layer back into the substrate.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: May 15, 2012
    Assignee: Corning Incorporated
    Inventors: Jay F Anzellotti, Horst Schreiber
  • Patent number: 8169705
    Abstract: The invention is directed to optical elements that are coated with dense homogeneous fluoride films and to a method of making such coated elements. The coatings materials are a high (“H”) refractive index fluoride material and a low (“L”) refractive index material that are co-evaporated to form a coating layer of a L-H coating material (a co-deposited coating of L and H materials). Lanthanide metal fluorides (for example, neodymium, lanthanum, dysprosium, yttrium and gadolinium, and combinations thereof) are preferred metal fluorides for use as the high refractive index materials with lanthanum fluoride (LaF3) and gadolinium fluoride (GdF3) being particularly preferred. Aluminum fluoride (AlF3) and alkaline earth metal fluorides (fluorides of calcium, magnesium, barium and strontium) are the preferred low refractive index materials, with magnesium fluoride (MgF2) being a preferred alkaline earth metal fluoride.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 1, 2012
    Assignee: Corning Incorporated
    Inventors: Michael J Cangemi, Horst Schreiber, Jue Wang
  • Patent number: 8153241
    Abstract: The invention is directed to highly reflective optical elements having an amorphous MgAl2O4?SiO2 coating with fluoride enhancements inserted and sealed by dense smooth SiO2 layers, and to a method for preparing such elements using energetic deposition techniques and the spinel crystalline form of MgAl2O4 as the source of the amorphous MgAl2O4 coating, The coating and the method described herein can be used to make highly reflective mirrors, and can also be applied to beamsplitters, prisms, lenses, output couplers and similar elements used in <200 nm laser systems.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: April 10, 2012
    Assignee: Corning Incorporated
    Inventors: Horst Schreiber, Charlene Marie Smith, Jue Wang
  • Publication number: 20110267685
    Abstract: The disclosure is directed to multilayer Mo/Si coatings for reflective mirrors used in extreme ultraviolet lithographic systems and to a method of making such mirrors using plasma ion assisted deposition (PIAD) techniques. The coating are deposited on a substrate suitable for EUV lithography, and are Mo/Si coating consisting of 40-100 Mo/Si periods, each period consisting on a Mo layer followed by a Si layer. Each of the individual Mo and Si layers is deposited to a specified or target thickness in the range of 2 nm to 5 nm, and the thicknesses are controlled to ±0.1 nm. A plasma from a plasma source is used to densify and smooth the substrate prior to deposition of the coating, and each layer of the coating is plasma densified and smoothed.
    Type: Application
    Filed: April 7, 2011
    Publication date: November 3, 2011
    Inventors: Horst Schreiber, Jue Wang
  • Publication number: 20110206859
    Abstract: The invention is directed to elements having fluoride coated surfaces having multiple layers of fluoride material coatings for use in laser systems, and in particular in laser systems operating at wavelength <200 nm. In a particular embodiment the invention is directed to highly reflective mirrors for use in wavelengths <200 nm laser systems. The invention describes the mirrors and a method of making them that utilizes a plurality of periods of fluoride coatings, each period comprising one layer a high refractive index fluoride material and one layer low refractive index fluoride material, and additionally at least one layer of an amorphous silica material. The silica material can be inserted between each period, inserted between a stack consisting of a plurality of periods, and, optionally, can also be applied as the final layer of the finished element to protect the element.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Inventors: Jue Wang, Horst Schreiber
  • Publication number: 20110205643
    Abstract: This disclosure is directed to an optical element and method in which a UV-curable adhesive, used along the edge of the optic to keep it in a holder, has been stabilized against degradation by below 300 nm radiation. The technical solution to the degradation of the adhesive includes both 193 nm scatter light reduction and protective coatings of plasma modified AlF3 films on at least that part of the optical element that is in contact with the adhesive.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 25, 2011
    Inventors: Horst Schreiber, Jue Wang
  • Patent number: 7961383
    Abstract: The invention is directed to elements having fluoride coated surfaces having multiple layers of fluoride material coatings for use in laser systems, and in particular in laser systems operating at wavelength <200 nm. In a particular embodiment the invention is directed to highly reflective mirrors for use in wavelengths <200 nm laser systems. The invention describes the mirrors and a method of making them that utilizes a plurality of periods of fluoride coatings, each period comprising one layer a high refractive index fluoride material and one layer low refractive index fluoride material, and additionally at least one layer of an amorphous silica material. The silica material can be inserted between each period, inserted between a stack consisting of a plurality of periods, and, optionally, can also be applied as the final layer of the finished element to protect the element.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: June 14, 2011
    Assignee: Corning Incorporated
    Inventors: Jue Wang, Horst Schreiber
  • Publication number: 20110122909
    Abstract: The disclosure is directed to a thin-film for use in below 300 nm laser systems that can be applied to a variety of substrate types. The thin film consists of a blocking layer of a selected material and a matching structure, the matching structure consisting of 1-7 layers of a selected material. The blocking layer serves to minimize or eliminate the transmission of below 300 nm laser light into an adhesive that is used to bond the substrate to a holder. The matching layer(s) minimize internal reflectance of below 300 nm laser light from the blocking layer back into the substrate.
    Type: Application
    Filed: October 18, 2010
    Publication date: May 26, 2011
    Inventors: Jay F. Anzellotti, Horst Schreiber
  • Patent number: 7903351
    Abstract: A laser beam is generated and transmitted within an enclosed pathway through at least one crystal optic at a power density that progressively degrades transmissivity of the crystal optic with accumulating fluence. The crystal optics are cooled below normal operating temperatures to slow the progressive degradation in the transmissivity of the crystal optics with the accumulating fluence or to accommodate a higher power density without correspondingly increasing the progressive degradation in transmissivity.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: March 8, 2011
    Assignee: Corning Incorporated
    Inventors: Colleen Renee Clar, William Rogers Rosch, Horst Schreiber, Charlene Marie Smith
  • Publication number: 20100215932
    Abstract: The invention is directed to highly reflective optical elements having an amorphous MgAl2O4?SiO2 coating with fluoride enhancements inserted and sealed by dense smooth SiO2 layers, and to a method for preparing such elements using energetic deposition techniques and the spinel crystalline form of MgAl2O4 as the source of the amorphous MgAl2O4 coating, The coating and the method described herein can be used to make highly reflective mirrors, and can also be applied to beamsplitters, prisms, lenses, output couplers and similar elements used in <200 nm laser systems.
    Type: Application
    Filed: February 26, 2009
    Publication date: August 26, 2010
    Inventors: Horst Schreiber, Charlene Marie Smith, Jue Wang