Patents by Inventor Hou-Pu Chou

Hou-Pu Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210032588
    Abstract: The present disclosure provides systems and methods for sorting a cell. The system may comprise a flow channel configured to transport a cell through the channel. The system may comprise an imaging device configured to capture an image of the cell from a plurality of different angles as the cell is transported through the flow channel. The system may comprise a processor configured to analyze the image using a deep learning algorithm to enable sorting of the cell.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 4, 2021
    Applicant: Deepcell, Inc.
    Inventors: Mahdokht MASAELI, Mahyar SALEK, Hou-Pu CHOU, Soroush KAHKESHANI
  • Patent number: 10808219
    Abstract: The present disclosure provides systems and methods for sorting a cell. The system may comprise a flow channel configured to transport a cell through the channel. The system may comprise an imaging device configured to capture an image of the cell from a plurality of different angles as the cell is transported through the flow channel. The system may comprise a processor configured to analyze the image using a deep learning algorithm to enable sorting of the cell.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: October 20, 2020
    Assignee: Deepcell, Inc.
    Inventors: Mahdokht Masaeli, Mahyar Salek, Hou-Pu Chou, Soroush Kahkeshani
  • Patent number: 10768362
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Publication number: 20200231927
    Abstract: The present disclosure provides systems and methods for sorting a cell. The system may comprise a flow channel configured to transport a cell through the channel. The system may comprise an imaging device configured to capture an image of the cell from a plurality of different angles as the cell is transported through the flow channel.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventors: Mahdokht MASAELI, Mahyar SALEK, Hou-Pu CHOU, Soroush KAHKESHANI
  • Publication number: 20200142127
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Application
    Filed: June 3, 2019
    Publication date: May 7, 2020
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Ravi SAXENA, Michael Tzu RU, Takashi Whitney ORIMOTO, Annette GROT, Mathieu FOQUET, Hou-Pu CHOU
  • Patent number: 10611995
    Abstract: The present disclosure provides systems and methods for sorting a cell. The system may comprise a flow channel configured to transport a cell through the channel. The system may comprise an imaging device configured to capture an image of the cell from a plurality of different angles as the cell is transported through the flow channel. The system may comprise a processor configured to analyze the image using a deep learning algorithm to enable sorting of the cell.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: April 7, 2020
    Assignee: Deepcell, Inc.
    Inventors: Mahdokht Masaeli, Mahyar Salek, Hou-Pu Chou, Soroush Kahkeshani
  • Patent number: 10509018
    Abstract: The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: December 17, 2019
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer
  • Patent number: 10310178
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: June 4, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Patent number: 10155250
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 18, 2018
    Assignee: California Institute of Technology
    Inventors: Hou-Pu Chou, Stephen R. Quake
  • Publication number: 20180239087
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 23, 2018
    Inventors: Ravi SAXENA, Michael Tzu RU, Takashi Whitney ORIMOTO, Annette GROT, Mathieu FOQUET, Hou-Pu CHOU
  • Patent number: 9946017
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: April 17, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Publication number: 20170322156
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 9, 2017
    Inventors: Ravi SAXENA, Michael Tzu RU, Takashi Whitney ORIMOTO, Annette GROT, Mathieu FOQUET, Hou-Pu CHOU
  • Patent number: 9658161
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: May 23, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Patent number: 9623413
    Abstract: Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: April 18, 2017
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk, Antoine Daridon
  • Patent number: 9593698
    Abstract: A microfabricated fluidic unidirectional valve includes a microfabricated elastomer material having a flow through channel. The microfabricated fluidic unidirectional valve also includes an elastomer flap attached to the elastomer material in the flow through channel. The elastomer flap forms a seal in the flow through channel to prevent fluid from flowing in a first direction through the flow through channel and to allow fluid flow in a second direction through the flow through channel.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 14, 2017
    Assignee: Fluidigm Corporation
    Inventors: David Fernandes, Hou-Pu Chou, Marc A. Unger
  • Publication number: 20170001195
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: June 3, 2016
    Publication date: January 5, 2017
    Inventors: Marc Alexander Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus Enzelberger, Mark L. Adams, Carl L. Hansen
  • Publication number: 20160339423
    Abstract: The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen/antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen/antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene.
    Type: Application
    Filed: March 23, 2016
    Publication date: November 24, 2016
    Inventors: Stephen R. Quake, Hou-Pu Chou
  • Publication number: 20160334334
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 17, 2016
    Inventors: Ravi SAXENA, Michael Tzu RU, Takashi Whitney ORIMOTO, Annette GROT, Mathieu FOQUET, Hou-Pu CHOU
  • Patent number: 9372308
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: June 21, 2016
    Assignee: PACIFIC BIOSCIENCES OF CALIFORNIA, INC.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Publication number: 20160129442
    Abstract: Microfluidic devices are described that include a rigid base layer, and an elastomeric layer on the base layer. The elastomeric layer may include at least part of a fluid channel for transporting a liquid reagent, and a vent channel that accepts gas diffusing through the elastomeric layer from the flow channel and vents it out of the elastomeric layer. The devices may also include a mixing chamber fluidly connected to the fluid channel, and a control channel overlapping with a deflectable membrane that defines a portion of the flow channel, where the control channel may be operable to change a rate at which the liquid reagent flows through the fluid channel. The devices may further include a rigid plastic layer on the elastomeric layer.
    Type: Application
    Filed: October 5, 2015
    Publication date: May 12, 2016
    Inventors: Tim Woudenberg, Jing Wang, Hou-Pu Chou