Patents by Inventor Hou T. Ng

Hou T. Ng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210205890
    Abstract: An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a feed material dispenser to deliver a plurality of successive layers of feed material over the platen, an energy source positioned above the platen to fuse at least a portion of an outermost layer of feed material, and a coolant fluid dispenser to deliver a coolant fluid onto the outermost layer of feed material after at least a portion of the outermost layer has been fused.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Hou T. Ng, Nag B. Patibandla, Ajey M. Joshi, Bharath Swaminathan, Ashavani Kumar, Eric Ng, Bernard Frey, Kasiraman Krishnan
  • Publication number: 20210205951
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Publication number: 20210154930
    Abstract: A dispensing system for an additive manufacturing includes a powder reservoir that contains powder to form an object, and an array of nozzles positioned at a base of the powder reservoir over a top surface of a platen where the object is to be formed. The powder flows from the powder reservoir through the nozzles to the top surface. A respective powder wheel in each nozzle controls a flow rate of the powder. Each wheel has multiple troughs on surface of the wheel. When a motor rotates the wheel, the troughs transport the powder through the nozzle. The rotation speed of the wheel controls the flow rate. For solid parts of the object, the wheel rotates and allows the powder to be deposited on the top surface. For empty parts of the object, the wheel remains stationary to prevent the powder from flowing to the surface.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Raanan Zehavi, Hou T. Ng, Nag B. Patibandla, Ajey M. Joshi
  • Publication number: 20210154931
    Abstract: A dispensing system for an additive manufacturing apparatus includes a frame, a powder reservoir, an agitator and an array of dispensing units positioned below the powder reservoir. The powder reservoir has a first width along a primary axis, and includes a lower portion and an upper portion that is wider than the lower portion along a second axis perpendicular to the primary axis. The agitator is positioned in the upper portion of the powder reservoir. Each dispensing unit includes a nozzle block that has a passage therethrough that defines a nozzle and provides a respective path for the powder to flow from the powder reservoir to the nozzle, and a valve positioned in the passage in the nozzle block to controllably release powder through the nozzle.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Raanan Zehavi, Hou T. Ng, Nag B. Patibandla, Ajey M. Joshi
  • Patent number: 11007570
    Abstract: An additive manufacturing apparatus includes a platform, one or more supports positioned above the platform, an actuator, a first dispenser system configured dispense a plurality of successive layers of powder onto a build area supported by the platform, a first binder material dispenser configured to selectively dispense a first binder material on a voxel-by-voxel basis to an uppermost layer of powder in the build area, and an energy source configured to emit radiation toward the platform so as to solidify the binder material. The first dispenser system includes a first powder dispenser that is attached to and moves with a first support from the one or more supports and is configured to selectively dispense a first powder onto the build area, and a second powder dispenser that is configured to selectively dispense the second powder onto the build area.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Nag B. Patibandla, Daihua Zhang
  • Patent number: 11002530
    Abstract: An additive manufacturing apparatus for forming a polishing pad for chemical mechanical polishing includes a platform, an actuator system coupled to the platform to adjust a tilt of the platform, one or more printheads supported above the platform, the one or more printheads configured to dispense successive layers of feed material on the platform to be form the polishing pad, a sensing system to detect a height of a surface on or above the platform at each of a plurality of horizontally spaced points, and a controller configured to selectively operate the actuator system to adjust the tilt of the platform based on the detected height of the platform at each of the points such that the surface is moved closer to horizontal.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: May 11, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan
  • Publication number: 20210114106
    Abstract: Additive manufacturing includes successively forming a plurality of layers on a support. Depositing a layer from the plurality of layers includes dispensing first particles, selectively dispensing second particles in selected regions corresponding to a surface of the object, and fusing at least a portion of the layer. The layer has the first particles throughout and the second particles in the selected regions. Alternatively or in addition, forming the plurality of layers includes depositing multiple groups of layers. Depositing a group of layers includes, for each layer in the group of layers dispensing a feed material to provide the layer, and after dispensing the feed material and before dispensing a subsequent layer fusing a selected portion of the layer. After all layers in the group of layers are dispensed, a volume of the group of layers that extends through all the layers in the group of layers is fused.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 22, 2021
    Inventors: Hou T. Ng, Nag B. Patibandla, Ajey M. Joshi, Bharath Swaminathan, Ashavani Kumar, Eric Ng, Bernard Frey, Kasiraman Krishnan
  • Patent number: 10981323
    Abstract: An additive manufacturing apparatus includes a platform, a dispenser to deliver a plurality of layers of feed material, one or more light sources configured to emit a first light beam and a second light beam, and a polygon beam scanner including a rotatable mirror having a plurality of reflective facets to redirect the first light beam and the second light beam toward the platform to deliver energy to an uppermost layer of feed material. The mirror is positioned and rotatable such that motion of each facet of the plurality of reflective facets causes the first light beam to sweep along a first path on the uppermost layer and causes the second light beam to sweep along the first path following the first light beam.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey L. Franklin, Hou T. Ng, Nag B. Patibandla
  • Patent number: 10981227
    Abstract: An additive manufacturing system includes a platen having a top surface, a support structure, a powder dispenser coupled to the support structure and positioned above the platen and configured to deliver a powder in a linear region that extends along a first axis, a gas dispenser coupled to the support structure in a fixed position relative to the powder dispenser and having an outlet to deliver a gas across the outermost layer of feed material, an energy source configured to selectively fused the layer of powder, and an actuator coupled to the support to move the support with the powder dispenser and the gas dispenser together along a second axis perpendicular to the first axis and parallel to the top surface such that the linear region and the outlet sweep along the second axis to deposit the powder in a swath over the platen and deliver the gas.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: April 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Nag B. Patibandla, Ajey M. Joshi, Bharath Swaminathan, Ashavani Kumar, Eric Ng, Bernard Frey, Kasiraman Krishnan
  • Patent number: 10967626
    Abstract: A module for an additive manufacturing system includes a frame, a dispenser configured to deliver a layer of particles over a platen, an energy source to generate a beam to fuse the particles, and a metrology system having a first sensor to measure a property of the surface of layer before being fused and a second sensor to measure a property of the layer after being fused. The dispenser, first sensor, energy source and second sensor are positioned on the frame in order along a first axis, and the dispenser, first sensor, energy source and second sensor are fixed to the frame such that the frame, dispenser, first sensor, energy source and second sensor can be mounted and dismounted as a single unit from a movable support.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 6, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Raanan Zehavi, Nag B. Patibandla
  • Patent number: 10960605
    Abstract: A dispensing system for an additive manufacturing includes a powder source that contains powder to form an object, and an array of nozzles positioned at a base of the powder source over a top surface of a platen where the object is to be formed. The powder flows from the powder source through the nozzles to the top surface. A respective powder wheel in each nozzle controls a flow rate of the powder. Each wheel has multiple troughs on surface of the wheel. When a motor rotates the wheel, the troughs transport the powder through the nozzle. The rotation speed of the wheel controls the flow rate. For solid parts of the object, the wheel rotates and allows the powder to be deposited on the top surface. For empty parts of the object, the wheel remains stationary to prevent the powder from flowing to the surface.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: March 30, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Raanan Zehavi, Hou T. Ng, Nag B. Patibandla, Eric Ng, Ajey M. Joshi, Kashif Maqsood, Paul J. Steffas
  • Patent number: 10953515
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: March 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Daniel Redfield, Rajeev Bajaj, Mahendra C. Orilall, Hou T. Ng, Jason G. Fung, Mayu Yamamura
  • Patent number: 10940641
    Abstract: An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery system. The energy delivery system has one or more light sources configured to emit a first light beam and a second light beam, and one or more reflective members each having reflective facets to redirect the first light beam or the second light beam toward an uppermost layer of feed material to deliver energy to the uppermost layer. The one or more reflective members are each rotatable such that motion of each sequential facet of the reflective facets of each of the one or more reflective members sweeps the first light beam along a first path on the uppermost layer or sweeps the second light beam along a second path on the uppermost layer.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey L. Franklin, Hou T. Ng, Nag B. Patibandla
  • Publication number: 20210054222
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 25, 2021
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Publication number: 20210023789
    Abstract: An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery assembly. The energy delivery assembly includes a light source to emit one or more light beams, a first reflective member having a plurality of reflective facets, and at least one second reflective member. The first reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer. The at least one second reflective member is movable such that the at least one second reflective surface is repositionable to receive at least one of the at least one light beam and redirect the at least one of at least one light beam along a two-dimensional path on the uppermost layer.
    Type: Application
    Filed: October 9, 2020
    Publication date: January 28, 2021
    Inventors: Hou T. Ng, Nag B. Patibandla, Ajey M. Joshi, Raanan Zehavi, Jeffrey L. Franklin, Kashif Maqsood
  • Publication number: 20210013258
    Abstract: An apparatus for positioning micro-devices on a substrate includes one or more supports to hold a donor substrate and a destination substrate, an adhesive dispenser to deliver adhesive on micro-devices on the donor substrate, a transfer device including a transfer surface to transfer the micro-devices from the donor substrate to the destination substrate, and a controller. The controller is configured to operate the adhesive dispenser to selectively dispense the adhesive onto selected micro-devices on the donor substrate based on a desired spacing of the selected micro-devices on the destination substrate.
    Type: Application
    Filed: June 22, 2020
    Publication date: January 14, 2021
    Inventors: Mingwei Zhu, Sivapackia Ganapathiappan, Boyi Fu, Hou T. Ng, Nag B. Patibandla
  • Publication number: 20210001545
    Abstract: In an example implementation, a method of printing a multi-structured three-dimensional (3D) object includes forming a layer of sinterable material. The method includes processing a first portion of the sinterable material using a first set of processing parameters and processing a second portion of the sinterable material using a second set of processing parameters. The processed first and second portions form, respectively, parts of a first and second structure of a multi-structured 3D object.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 7, 2021
    Inventors: Lihua Zhao, Yan Zhao, Hou T. Ng
  • Patent number: 10882302
    Abstract: An additive manufacturing apparatus includes a dispensing system positionable over a platen to deliver a powder, an actuator to move the dispensing system along a scan axis, and an energy source to fuse a portion of the powder. The dispensing system has a hopper to hold the powder and a dispenser. The dispenser includes a channel extending along a longitudinal axis from a proximal end to a distal end. The proximal end of the channel of the dispenser is configured to receive the powder from the powder source. A powder conveyor is positioned within the channel to move the powder from the proximal end along a length of the channel, and a plurality of apertures are arranged along the longitudinal axis of the channel. The dispenser is configured such that flow of powder through each aperture is independently controllable.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Raanan Zehavi, Nag B. Patibandla
  • Patent number: 10882111
    Abstract: Additive manufacturing includes successively forming a plurality of layers on a support. Depositing a layer from the plurality of layers includes dispensing first particles, selectively dispensing second particles in selected regions corresponding to a surface of the object, and fusing at least a portion of the layer. The layer has the first particles throughout and the second particles in the selected regions. Alternatively or in addition, forming the plurality of layers includes depositing multiple groups of layers. Depositing a group of layers includes, for each layer in the group of layers dispensing a feed material to provide the layer, and after dispensing the feed material and before dispensing a subsequent layer fusing a selected portion of the layer. After all layers in the group of layers are dispensed, a volume of the group of layers that extends through all the layers in the group of layers is fused.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Nag B. Patibandla, Ajey M. Joshi, Bharath Swaminathan, Ashavani Kumar, Eric Ng, Bernard Frey, Kasiraman Krishnan
  • Publication number: 20200411351
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, positioning a substrate within the support structure, printing one or more anchors on the substrate and the support structure by printing and curing the liquid precursor material to secure the substrate to the support structure, and printing one or more device structures on the substrate while anchored by printing and curing the liquid precursor material.
    Type: Application
    Filed: April 2, 2020
    Publication date: December 31, 2020
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen