Patents by Inventor Houchun Hu

Houchun Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11915412
    Abstract: A cortical malformation identification method includes quantitatively evaluating, using a processor of a computer that includes the processor and a memory, digital image data from a magnetic resonance imaging (MRI) scan on a cerebral cortex to produce quantified scan data. The method also includes automatically detecting a cortical malformation based on the quantified scan data. An image of the cerebral cortex may be color-coded so that the cortical malformation is shown in a different color than the remainder of the cerebral cortex in the image, based on the quantified scan data. Additionally or alternatively, a 3-dimensional representation of the cerebral cortex may be mapped to the quantified scan data to produce a mapped image of the cerebral cortex including the detected cortical malformation.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: February 27, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Lyubomir Georgiev Zagorchev, Fabien Wenzel, Martin Bergtholdt, Houchun Hu, Jeffrey Miller, Carsten Meyer
  • Publication number: 20210282700
    Abstract: A seizure characterization method includes correlating locations of electrodes placed around a brain and used to produce sequential electroencephalography (EEG) signals with a three-dimensional anatomical brain model derived from magnetic resonance imaging (MRI). The sequential EEG signals are modelled from the electrodes placed around the brain in three dimensions using cortical and sub-cortical brain regions included in the brain model to define constraints for the numerical solution. Amounts of the sequential EEG signals are quantified in three dimensions relative to the brain regions included in the brain model. The method also includes establishing, based on the quantifying, at least one propagation pattern of the sequential EEG signals in time relative to the brain regions in the brain model.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 16, 2021
    Inventors: Lyubomir Georgiev ZAGORCHEV, Fabian WENZEL, Carsten MEYER, Martin BERGTHOLDT, Houchun HU, Jeffrey MILLER
  • Publication number: 20190347795
    Abstract: A cortical malformation identification method includes quantitatively evaluating, using a processor of a computer that includes the processor and a memory, digital image data from a magnetic resonance imaging (MRI) scan on a cerebral cortex to produce quantified scan data. The method also includes automatically detecting a cortical malformation based on the quantified scan data. An image of the cerebral cortex may be color-coded so that the cortical malformation is shown in a different color than the remainder of the cerebral cortex in the image, based on the quantified scan data. Additionally or alternatively, a 3-dimensional representation of the cerebral cortex may be mapped to the quantified scan data to produce a mapped image of the cerebral cortex including the detected cortical malformation.
    Type: Application
    Filed: January 3, 2018
    Publication date: November 14, 2019
    Inventors: LYUBOMIR GEORGIEV ZAGORCHEV, FABIEN WENZEL, MARTIN BERGTHOLDT, HOUCHUN HU, JEFFREY MILLER, CARSTEN MEYER
  • Publication number: 20060020198
    Abstract: MRA data is acquired from a large region of interest by translating the patient through the bore of the MRI system as a three-dimensional MRA data set are acquired. The pulse sequence is altered during the scan to change the lateral FOVL of the acquired image to better match the size of the region of interest along its length. Patient table movement is controlled to track a bolus of contrast agent as it passes through the region of interest. A seamless image of the entire region of interest is reconstructed after the acquired data is resampled in regions where the lateral FOVL is altered.
    Type: Application
    Filed: December 22, 2004
    Publication date: January 26, 2006
    Inventors: Stephen Riederer, Houchun Hu, David Kruger