Patents by Inventor Houda Graoui

Houda Graoui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10510545
    Abstract: Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process, or a single-step plasma hydrogenation and nitridization process, is performed on a metal nitride layer in a film stack, thereby, according to some embodiments, removing oxygen atoms disposed within layers of the film stack and, in some embodiments, adding nitrogen atoms to the layers of the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: December 17, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Houda Graoui, Johanes S. Swenberg, Wei Liu, Steven C. H. Hung
  • Patent number: 10504779
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Johanes S. Swenberg, Wei Liu, Houda Graoui, Shashank Sharma, Shankar Muthukrishnan, Rene George
  • Patent number: 10431466
    Abstract: Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process is performed on a metal nitride layer in a film stack, thereby removing oxygen atoms disposed within layers of the film stack and, in some embodiments eliminating an oxygen-containing interfacial layer disposed within the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift. Further, the metal gate structure operates with an increased leakage current that is as little as one quarter the increase in leakage current associated with a similar metal gate structure formed via conventional techniques.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 1, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Johanes S. Swenberg, Wei Liu, Houda Graoui, Steven C. H. Hung
  • Publication number: 20190287805
    Abstract: A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 19, 2019
    Inventors: Steven C. H. HUNG, Johanes S. SWENBERG, Wei LIU, Houda GRAOUI
  • Patent number: 10347492
    Abstract: A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. H. Hung, Johanes S. Swenberg, Wei Liu, Houda Graoui
  • Publication number: 20190172716
    Abstract: Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process, or a single-step plasma hydrogenation and nitridization process, is performed on a metal nitride layer in a film stack, thereby, according to some embodiments, removing oxygen atoms disposed within layers of the film stack and, in some embodiments, adding nitrogen atoms to the layers of the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift.
    Type: Application
    Filed: January 9, 2019
    Publication date: June 6, 2019
    Inventors: Houda Graoui, Johanes S. Swenberg, Wei Liu, Shashank Sharma
  • Publication number: 20190157143
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Johanes S. SWENBERG, Wei LIU, Houda GRAOUI, Shashank SHARMA, Shankar MUTHUKRISHNAN, Rene GEORGE
  • Patent number: 10290504
    Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: May 14, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei Liu, Theresa Kramer Guarini, Huy Q. Nguyen, Malcolm Bevan, Houda Graoui, Philip A. Bottini, Bernard L. Hwang, Lara Hawrylchak, Rene George
  • Publication number: 20190115219
    Abstract: Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process is performed on a metal nitride layer in a film stack, thereby removing oxygen atoms disposed within layers of the film stack and, in some embodiments eliminating an oxygen-containing interfacial layer disposed within the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift. Further, the metal gate structure operates with an increased leakage current that is as little as one quarter the increase in leakage current associated with a similar metal gate structure formed via conventional techniques.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Inventors: Johanes S. SWENBERG, Wei LIU, Houda GRAOUI, Shashank SHARMA
  • Patent number: 10236207
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: March 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Johanes S. Swenberg, Wei Liu, Houda Graoui, Shashank Sharma, Shankar Muthukrishnan, Rene George
  • Patent number: 10103027
    Abstract: Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process is performed on a metal nitride layer in a film stack, thereby removing oxygen atoms disposed within layers of the film stack and, in some embodiments eliminating an oxygen-containing interfacial layer disposed within the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift. Further, the metal gate structure operates with an increased leakage current that is as little as one quarter the increase in leakage current associated with a similar metal gate structure formed via conventional techniques.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: October 16, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Johanes S. Swenberg, Wei Liu, Houda Graoui, Shashank Sharma
  • Publication number: 20180218911
    Abstract: A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.
    Type: Application
    Filed: January 18, 2018
    Publication date: August 2, 2018
    Inventors: Steven C. H. HUNG, Johanes S. SWENBERG, Wei LIU, Houda GRAOUI
  • Publication number: 20180082847
    Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Inventors: Wei LIU, Theresa Kramer GUARINI, Huy Q. NGUYEN, Malcolm BEVAN, Houda GRAOUI, Philip A. BOTTINI, Bernard L. HWANG, Lara HAWRYLCHAK, Rene GEORGE
  • Publication number: 20170365512
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Application
    Filed: February 21, 2017
    Publication date: December 21, 2017
    Inventors: Johanes S. SWENBERG, Wei LIU, Houda GRAOUI, Shashank SHARMA, Shankar MUTHUKRISHNAN, Rene GEORGE
  • Publication number: 20170365480
    Abstract: Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process is performed on a metal nitride layer in a film stack, thereby removing oxygen atoms disposed within layers of the film stack and, in some embodiments eliminating an oxygen-containing interfacial layer disposed within the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift. Further, the metal gate structure operates with an increased leakage current that is as little as one quarter the increase in leakage current associated with a similar metal gate structure formed via conventional techniques.
    Type: Application
    Filed: February 24, 2017
    Publication date: December 21, 2017
    Inventors: Johanes S. SWENBERG, Wei LIU, Houda GRAOUI, Shashank SHARMA
  • Patent number: 9831091
    Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 28, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei Liu, Theresa Kramer Guarini, Huy Q. Nguyen, Malcolm Bevan, Houda Graoui, Philip A. Bottini, Bernard L. Hwang, Lara Hawrylchak, Rene George
  • Publication number: 20160358781
    Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
    Type: Application
    Filed: June 2, 2016
    Publication date: December 8, 2016
    Inventors: Wei LIU, Theresa Kramer GUARINI, Huy Q. NGUYEN, Malcolm BEVAN, Houda GRAOUI, Philip A. BOTTINI, Bernard L. HWANG, Lara HAWRYLCHAK, Rene GEORGE
  • Publication number: 20150311067
    Abstract: Embodiments of the present disclosure relate to methods for processing a substrate. In one embodiment, the method includes forming a dielectric layer over a substrate, wherein the dielectric layer has a dielectric value of about 3.9 or greater, heating the substrate to a first temperature of about 600 degrees Celsius or less by a heater of a substrate support disposed within a process chamber, and incorporating nitrogen into the dielectric layer in the process chamber by annealing the dielectric layer at a second temperature between about 650 and about 1450 degrees Celsius in an ambient nitrogen environment, wherein the annealing is performed on the order of millisecond scale.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Inventors: Shashank SHARMA, Jau-Jiun CHEN, Wolfgang R. ADERHOLD, Kai NG, Houda GRAOUI, Shankar MUTHUKRISHNAN, Abhilash J. MAYUR, Gia PHAM
  • Patent number: 7482255
    Abstract: A method of ion implantation comprises the steps of: providing a semiconductor substrate; performing a pre-amorphisation implant in the semiconductor substrate in a direction of implant at an angle in the range of 20-60° to a normal to a surface of the semiconductor substrate, and performing an implant of a dopant in the semiconductor substrate to provide a shallow junction. In a feature of the invention, the method further comprises performing an implant of a defect trapping element in the semiconductor substrate and the pre-amorphisation implant step is performed at a first implant energy and the implant of a defect trapping element is performed at a second implant energy, the ratio of the first implant energy to the second implant energy being in the range of 10-40%.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: January 27, 2009
    Inventors: Houda Graoui, Majeed Ali Foad, Amir Al-Bayati
  • Publication number: 20060160338
    Abstract: A method of ion implantation comprises the steps of: providing a semiconductor substrate; performing a pre-amorphisation implant in the semiconductor substrate in a direction of implant at an angle in the range of 20-60° to a normal to a surface of the semiconductor substrate, and performing an implant of a dopant in the semiconductor substrate to provide a shallow junction. In a feature of the invention, the method further comprises performing an implant of a defect trapping element in the semiconductor substrate and the pre-amorphisation implant step is performed at a first implant energy and the implant of a defect trapping element is performed at a second implant energy, the ratio of the first implant energy to the second implant energy being in the range of 10-40%.
    Type: Application
    Filed: December 14, 2005
    Publication date: July 20, 2006
    Inventors: Houda Graoui, Majeed Foad, Amir Al-Bayati