Patents by Inventor Howard Allen Colvin
Howard Allen Colvin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7790799Abstract: This invention is based upon the discovery that elongated silica has superior characteristics for reinforcing rubbery elastomers as compared to conventional silica. More specifically, elongated silica provides a higher level of reinforcement for elastomers at the same level of loading. Accordingly, elongated silica can be employed to attain an equivalent level of reinforcement at a lower level of loading. This results in lower weight compositions and potential cost savings. Rubber compounds that are reinforced with elongated silica offer significant advantages in tires including reduced rolling resistance, increased tread life, and, of course, reduced weight.Type: GrantFiled: August 10, 2007Date of Patent: September 7, 2010Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Sun Lin Chen
-
Patent number: 7288602Abstract: The present invention relates to silica filled multi-viscoelastic response rubber which is thermomechanically mixed with an organosilicon compound during the non-productive mix stage and zinc oxide is added during the productive stage of mixing.Type: GrantFiled: February 9, 2005Date of Patent: October 30, 2007Assignee: The Goodyear Tire & Rubber CompanyInventors: Georges Marcel Victor Thielen, Howard Allen Colvin
-
Patent number: 7276550Abstract: This invention is based upon the discovery that elongated silica has superior characteristics for reinforcing rubbery elastomers as compared to conventional silica. More specifically, elongated silica provides a higher level of reinforcement for elastomers at the same level of loading. Accordingly, elongated silica can be employed to attain an equivalent level of reinforcement at a lower level of loading. This results in lower weight compositions and potential cost savings. Rubber compounds that are reinforced with elongated silica offer significant advantages in tires including reduced rolling resistance, increased tread life, and, of course, reduced weight. The subject invention more specifically relates to a silica reinforced rubber composition which is comprised of (1) a rubbery polymer and (2) an elongated silica, wherein the elongated silica has a width that is within the range of about 5 nm to about 40 nm and wherein the elongated silica has a length of about 40 nm to about 300 nm.Type: GrantFiled: December 7, 2001Date of Patent: October 2, 2007Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Sun Lin Chen
-
Patent number: 7101922Abstract: This invention relates to the preparation of a silica reinforced elastomer via preparation of a silica-elastomer masterbatch as a composite of synthetic silica and an emulsion polymerization prepared synthetic elastomer. Such masterbatch is prepared by introducing such silica and a silane into a latex of the synthetic elastomer and recovering the composite thereof The invention further includes a rubber composition of at least two elastomers wherein at least one of said elastomers is such masterbatched composite. A tire having a component of such rubber composition, particularly a tire tread, is specifically contemplated.Type: GrantFiled: December 2, 2002Date of Patent: September 5, 2006Assignee: The Goodyear Tire & Rubber CompanyInventors: Sun-Lin Chen, Howard Allen Colvin
-
Patent number: 6743839Abstract: This invention is based upon the discovery that a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur can be used to improved the force ductility, elastic recovery, toughness and tenacity of asphalt cement. The polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur also exhibits excellent compatibility with asphalt. The repeat units in the polydiene rubber that are derived from sulfur are in the backbone of the polymer. These repeat units that are derived from sulfur typically contain from 2 to 8 sulfur atoms (—Sn—). The subject invention more specifically relates to a modified asphalt cement which is comprised of (i) from about 90 weight percent to about 99 weight percent asphalt; (ii) from about 1 weight percent to about 10 weight percent of a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur.Type: GrantFiled: March 28, 2003Date of Patent: June 1, 2004Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Edwin Gresham Moore
-
Patent number: 6737452Abstract: This invention is based upon the discovery that a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur can be used to improved the force ductility, elastic recovery, toughness and tenacity of asphalt cement. The polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur also exhibits excellent compatibility with asphalt. The repeat units in the polydiene rubber that are derived from sulfur are in the backbone of the polymer. These repeat units that are derived from sulfur typically contain from 2 to 8 sulfur atoms (—Sn—). The subject invention more specifically relates to a modified asphalt cement which is comprised of (i) from about 90 weight percent to about 99 weight percent asphalt; (ii) from about 1 weight percent to about 10 weight percent of a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur.Type: GrantFiled: April 1, 2003Date of Patent: May 18, 2004Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Edwin Gresham Moore
-
Publication number: 20030203997Abstract: This invention is based upon the discovery that a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur can be used to improved the force ductility, elastic recovery, toughness and tenacity of asphalt cement. The polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur also exhibits excellent compatibility with asphalt. The repeat units in the polydiene rubber that are derived from sulfur are in the backbone of the polymer. These repeat units that are derived from sulfur typically contain from 2 to 8 sulfur atoms (—Sn—). The subject invention more specifically relates to a modified asphalt cement which is comprised of (i) from about 90 weight percent to about 99 weight percent asphalt; (ii) from about 1 weight percent to about 10 weight percent of a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur.Type: ApplicationFiled: April 1, 2003Publication date: October 30, 2003Applicant: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Edwin Gresham Moore
-
Publication number: 20030187105Abstract: This invention is based upon the discovery that a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur can be used to improved the force ductility, elastic recovery, toughness and tenacity of asphalt cement. The polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur also exhibits excellent compatibility with asphalt. The repeat units in the polydiene rubber that are derived from sulfur are in the backbone of the polymer. These repeat units that are derived from sulfur typically contain from 2 to 8 sulfur atoms (—Sn—). The subject invention more specifically relates to a modified asphalt cement which is comprised of (i) from about 90 weight percent to about 99 weight percent asphalt; (ii) from about 1 weight percent to about 10 weight percent of a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur.Type: ApplicationFiled: March 28, 2003Publication date: October 2, 2003Applicant: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Edwin Gresham Moore
-
Publication number: 20030119946Abstract: This invention relates to the preparation of a silica reinforced elastomer via preparation of a silica-elastomer masterbatch as a composite of synthetic silica and an emulsion polymerization prepared synthetic elastomer. Such masterbatch is prepared by introducing such silica and a silane into a latex of the synthetic elastomer and recovering the composite thereof The invention further includes a rubber composition of at least two elastomers wherein at least one of said elastomers is such masterbatched composite. A tire having a component of such rubber composition, particularly a tire tread, is specifically contemplated.Type: ApplicationFiled: December 2, 2002Publication date: June 26, 2003Inventors: Sun-Lin Chen, Howard Allen Colvin
-
Patent number: 6573315Abstract: This invention is based upon the discovery that a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur can be used to improved the force ductility, elastic recovery, toughness and tenacity of asphalt cement. The polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur also exhibits excellent compatibility with asphalt. The repeat units in the polydiene rubber that are derived from sulfur are in the backbone of the polymer. These repeat units that are derived from sulfur typically contain from 2 to 8 sulfur atoms (—Sn—). The subject invention more specifically relates to a modified asphalt cement which is comprised of (i) from about 90 weight percent to about 99 weight percent asphalt; (ii) from about 1 weight percent to about 10 weight percent of a polydiene rubber that is comprised of repeat units that are derived from a conjugated diene monomer and sulfur.Type: GrantFiled: November 14, 2000Date of Patent: June 3, 2003Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Edwin Gresham Moore
-
Publication number: 20030050370Abstract: The present invention relates to silica filled multi-viscoelastic response rubber which is thermomechanically mixed with an organosilicon compound during the non-productive mix stage and zinc oxide is added during the productive stage of mixing.Type: ApplicationFiled: February 27, 2002Publication date: March 13, 2003Inventors: Georges Marcel Victor Thielen, Howard Allen Colvin
-
Patent number: 6512053Abstract: This invention discloses an emulsion styrene-butadiene rubber (SBR) that can be employed in manufacturing tire tread formulations that have rolling resistance and treadwear characteristics that are similar to those made with solution SBR but with improved traction characteristics. Thus, the emulsion SBR of this invention is superior in many respects for use in tire tread compounds to conventional solution SBR and conventional emulsion SBR. This invention more specifically discloses a styrene-butadiene rubber composition which is comprised of repeat units which are derived from styrene, 1,3-butadiene, and a hydroxy alkyl acrylate monomer, wherein the styrene-butadiene rubber composition has a number average molecular weight as determined by field flow fractionation which is within the range of about 50,000 to 150,000, and wherein the styrene-butadiene rubber has a light scattering to refractive index ratio which is within the range of 1.8 to 3.9.Type: GrantFiled: June 20, 2002Date of Patent: January 28, 2003Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Michael Leslie Senyek, Jr.
-
Patent number: 6469104Abstract: This invention discloses an emulsion styrene-butadiene rubber (SBR) that can be employed in manufacturing tire tread formulations that have rolling resistance and treadwear characteristics that are similar to those made with solution SBR but with improved traction characteristics. Thus, the emulsion SBR of this invention is superior in many respects for use in tire tread compounds to conventional solution SBR and conventional emulsion SBR. This invention more specifically discloses a styrene-butadiene rubber composition which is comprised of repeat units which are derived from styrene and 1,3-butadiene, wherein the styrene-butadiene rubber composition has a number average molecular weight as determined by thermal field flow fractionation which is within the range of about 50,000 to 150,000, and wherein the styrene-butadiene rubber has a light scattering to refractive index ratio which is within the range of 1.8 to 3.9.Type: GrantFiled: March 9, 1999Date of Patent: October 22, 2002Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Michael Leslie Senyek
-
Patent number: 6458884Abstract: This invention discloses an emulsion styrene-butadiene rubber (SBR) that can be employed in manufacturing tire tread formulations that have rolling resistance and treadwear characteristics that are similar to those made with solution SBR but with improved traction characteristics. Thus, the emulsion SBR of this invention is superior in many respects for use in tire tread compounds to conventional solution SBR and conventional emulsion SBR. This invention more specifically discloses a styrene-butadiene rubber composition which is comprised of repeat units which are derived from styrene and 1,3-butadiene, wherein the styrene-butadiene rubber composition has a number average molecular weight as determined by thermal field flow fractionation which is within the range of about 50,000 to 150,000, and wherein the styrene-butadiene rubber has a light scattering to refractive index ratio which is within the range of 1.8 to 3.9.Type: GrantFiled: October 17, 2000Date of Patent: October 1, 2002Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Michael Leslie Senyek
-
Patent number: 6455655Abstract: This invention discloses an emulsion styrene-butadiene rubber (SBR) that can be employed in manufacturing tire tread formulations that have rolling resistance and treadwear characteristics that are similar to those made with solution SBR but with improved traction characteristics. Thus, the emulsion SBR of this invention is superior in many respects for use in tire tread compounds to conventional solution SBR and conventional emulsion SBR. This invention more specifically discloses a styrene-butadiene rubber composition which is comprised of repeat units which are derived from styrene, 1,3-butadiene, and a hydroxy alkyl acrylate monomer, wherein the styrene-butadiene rubber composition has a number average molecular weight as determined by field flow fractionation which is within the range of about 50,000 to 150,000, and wherein the styrene-butadiene rubber has a light scattering to refractive index ratio which is within the range of 1.8 to 3.9.Type: GrantFiled: July 25, 2001Date of Patent: September 24, 2002Assignee: The Goodyear Tire & Rubber CompanyInventors: Howard Allen Colvin, Michael Leslie Senyek, Jr.
-
Publication number: 20020128370Abstract: This invention is based upon the discovery that elongated silica has superior characteristics for reinforcing rubbery elastomers as compared to conventional silica. More specifically, elongated silica provides a higher level of reinforcement for elastomers at the same level of loading. Accordingly, elongated silica can be employed to attain an equivalent level of reinforcement at a lower level of loading. This results in lower weight compositions and potential cost savings. Rubber compounds that are reinforced with elongated silica offer significant advantages in tires including reduced rolling resistance, increased tread life, and, of course, reduced weight. The subject invention more specifically relates to a silica reinforced rubber composition which is comprised of (1) a rubbery polymer and (2) an elongated silica, wherein the elongated silica has a width that is within the range of about 5 nm to about 40 nm and wherein the elongated silica has a length of about 40 nm to about 300 nm.Type: ApplicationFiled: December 7, 2001Publication date: September 12, 2002Inventors: Howard Allen Colvin, Sun Lin Chen
-
Publication number: 20020061955Abstract: This invention discloses an emulsion styrene-butadiene rubber (SBR) that can be employed in manufacturing tire tread formulations that have rolling resistance and treadwear characteristics that are similar to those made with solution SBR but with improved traction characteristics. Thus, the emulsion SBR of this invention is superior in many respects for use in tire tread compounds to conventional solution SBR and conventional emulsion SBR. This invention more specifically discloses a styrene-butadiene rubber composition which is comprised of repeat units which are derived from styrene, 1,3-butadiene, and a hydroxy alkyl acrylate monomer, wherein the styrene-butadiene rubber composition has a number average molecular weight as determined by field flow fractionation which is within the range of about 50,000 to 150,000, and wherein the styrene-butadiene rubber has a light scattering to refractive index ratio which is within the range of 1.8 to 3.9.Type: ApplicationFiled: July 25, 2001Publication date: May 23, 2002Inventors: Howard Allen Colvin, Michael Leslie Senyek
-
Patent number: 6232404Abstract: High viscosity elastomers are often difficult to utilize in rubber compositions without first creating a pre-blend of the high viscosity elastomer and a rubber processing oil to reduce their overall viscosity. This invention relates to utilization of a specialized pre-blend of high viscosity and low viscosity elastomers for use in rubber compositions and to the resulting rubber composition. The use of such resulting rubber composition may be for component(s) of tires, particularly including tire treads. The specialized pre-blend of high and low viscosity elastomers is required to be created by blending individual latices or, alternatively, by blending individual polymerizates of elastomers with diverse viscosities.Type: GrantFiled: October 3, 2000Date of Patent: May 15, 2001Assignee: The Goodyear Tire & Rubber CompanyInventors: Paul Harry Sandstrom, Edward John Blok, David John Zanzig, Howard Allen Colvin, Michael Leslie Senyek
-
Patent number: 6166140Abstract: High viscosity elastomers are often difficult to utilize in rubber compositions without first creating a pre-blend of the high viscosity elastomer and a rubber processing oil to reduce their overall viscosity. This invention relates to utilization of a specialized pre-blend of high viscosity and low viscosity elastomers for use in rubber compositions and to the resulting rubber composition. The use of such resulting rubber composition may be for component(s) of tires, particularly including tire treads. The specialized pre-blend of high and low viscosity elastomers is required to be created by blending individual latices or, alternatively, by blending individual polymerizates of elastomers with diverse viscosities.Type: GrantFiled: March 9, 1999Date of Patent: December 26, 2000Assignee: The Goodyear Tire & Rubber CompanyInventors: Paul Harry Sandstrom, Edward John Blok, David John Zanzig, Howard Allen Colvin, Michael Leslie Senyek
-
Patent number: 6066705Abstract: By utilizing the vapor phase polymerization techniques of the present invention, numerous distinct and highly beneficial advantages are realized. For instance, cis-1,4-polyisoprene rubber and high cis-1,4-polybutadiene rubber having a consistent and controllable molecular weight can be easily and practically prepared without utilizing a solvent. The subject invention more specifically discloses a method for vapor phase polymerizing isoprene into cis-1,4-polyisoprene in a process comprising the steps of:(1) charging into a reaction zone said isoprene and a preformed catalyst system which is made by reacting an organoaluminum compound with titanium tetrachloride, preferably in the presence of at least one ether; wherein the isoprene is maintained in the vapor phase in said reaction zone by a suitable combination of temperature and pressure;(2) allowing said isoprene to polymerize into cis-1,4-polyisoprene at a temperature within the range of about 35.degree. C. to about 70.degree. C.Type: GrantFiled: May 2, 1997Date of Patent: May 23, 2000Assignee: The Goodyear Tire & Rubber CompanyInventors: Nissim Calderon, Kenneth Floyd Castner, Howard Allen Colvin, Joel Muse, Jr.