Patents by Inventor Howard Baumer

Howard Baumer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090189794
    Abstract: A block encoder flexibly encodes K codes to produce an encoded data block. The block encoder receives an unformatted block of 10 Gigabit Media Independent Interface (XGMII) data. The unformatted block of data includes data and/or K characters, both of which can be located in any position of the unformatted block. The block encoder inserts data characters into a first set of slots of the encoded data block. The block encoder encodes K characters to produce corresponding encoded K characters. Each encoded K character includes a link field, a position field and a recoded value field. The encoded K characters are inserted into a second set of slots of the encoded data block. A synchronization header is attached to the encoded data block to distinguish control blocks from pure data blocks. The header and encoded data block are subsequently scrambled in preparation for transmission.
    Type: Application
    Filed: March 25, 2009
    Publication date: July 30, 2009
    Applicant: Broadcom Corporation
    Inventor: Howard A. Baumer
  • Publication number: 20090185565
    Abstract: A system and method for using sequence ordered sets for energy efficient Ethernet communication. Sequence ordered sets can be generated by a first device for communication of parameter(s) to a second device, which parameters can be used in implementing an energy efficient Ethernet control policy. Sequence ordered sets can be used in communication between physical layer devices, or between a physical layer device and a media access control device. In one example, the sequence ordered set can identify a point at which a rate transition is to occur.
    Type: Application
    Filed: June 30, 2008
    Publication date: July 23, 2009
    Applicant: Broadcom Corporation
    Inventors: Wael William Diab, Howard Baumer
  • Publication number: 20090187778
    Abstract: A system and method for reducing power consumption during periods of low link utilization. A single enhanced core can be defined that enables operation of subset of parent physical layer devices (PHYs). The subset and parent PHYs can have a fundamental relationship that enables synchronous switching between them depending on the link utilization state.
    Type: Application
    Filed: June 30, 2008
    Publication date: July 23, 2009
    Applicant: Broadcom Corporation
    Inventors: Wael William Diab, Howard Baumer
  • Patent number: 7545899
    Abstract: Systems and methods for synchronizing a receive clock signal phase with a transmit clock signal phase are presented. A system includes a receiving channel and a transmitting channel, wherein the transmitting channel synchronizes a transmit clock signal phase with a receive clock signal phase based on receive clock signal phase data. A method includes storing a previous receive clock signal phase of a receiving channel and identifying a current receive clock signal phase of the receiving channel. The method further includes determining a phase difference between the previous receive clock signal phase and the current receive clock signal phase, and identifying a direction of the phase difference. The method further includes adjusting a previous transmit clock signal phase of the transmitting channel to a current transmit clock signal phase of the transmitting channel based on the phase difference and direction.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: June 9, 2009
    Assignee: Broadcom Corporation
    Inventors: Abbas Amirichimeh, Howard Baumer, John Louie, Vasudevan Parthasarathy, Linda Ying
  • Patent number: 7533311
    Abstract: A multi-port SERDES transceiver includes multiple parallel and serial ports, and the flexibility to connect any one of the parallel or serial ports to another parallel or serial port. The ports include programmable pads that are capable of supporting multiple different data protocols, timing protocols, electrical specifications, and input-output functions. A management data IO pad also enables the transceiver to support different electrical requirements and data protocols at the same time. The substrate layout of the transceiver is configured so that the parallel ports and the serial ports are on the outer perimeter. A logic core is at the center, where the logic core operates the serial and parallel data ports, and the bus that connects the data ports. The bus can be described as a “ring” structure (or donut “structure”) around the logic core, and is configured between the logic core and the data ports.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: May 12, 2009
    Assignee: Broadcom Corporation
    Inventors: Hoang T. Tran, Howard A. Baumer
  • Patent number: 7528747
    Abstract: A block encoder flexibly encodes K codes to produce an encoded data block. The block encoder receives an unformatted block of 10 Gigabit Media Independent Interface (XGMII) data. The unformatted block of data includes data and/or K characters, both of which can be located in any position of the unformatted block. The block encoder inserts data characters into a first set of slots of the encoded data block. The block encoder encodes K characters to produce corresponding encoded K characters. Each encoded K character includes a link field, a position field and a recoded value field. The encoded K characters are inserted into a second set of slots of the encoded data block. A synchronization header is attached to the encoded data block to distinguish control blocks from pure data blocks. The header and encoded data block are subsequently scrambled in preparation for transmission.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 5, 2009
    Assignee: Broadcom Corporation
    Inventor: Howard A. Baumer
  • Publication number: 20090086753
    Abstract: A system for encoding data in a multilane communication channel may include at least one processor operable to generate, from existing control characters in a character set, expanded control characters utilized for controlling the data in each lane of the multilane communication channel. Each lane of the multilane communication channel may transport the data in a similar direction. The at least one processor is also operable to control at least one of the lanes of the multilane communication channel using at least one of the generated control characters. If a first control character of the existing control characters is a start-of-packet control character, the at least one processor is then operable to select a second control character from any other of the generated expanded control characters, and to indicate a start of a packet using the selected second control character for at least one of the lanes.
    Type: Application
    Filed: December 8, 2008
    Publication date: April 2, 2009
    Inventors: Martin Lund, Howard Baumer
  • Publication number: 20090041060
    Abstract: A cross link multiplexer bus comprising a plurality of cross link multiplexers and a plurality of interconnects. The plurality of cross link multiplexers has a destination port configured to receive a signal and an origin port configured to produce the signal. The plurality of interconnects has a set of interconnects coupled between a pair of adjacent cross link multiplexers. Preferably, the destination port is in a first cross link multiplexer, the origin port is in a second cross link multiplexer, and the first cross link multiplexer is configured to convey the signal toward the second cross link multiplexer in more than one direction. In an embodiment, the signal is capable of being represented as a series of characters, and a character is capable of being represented as a number of bits. Preferably, the plurality of cross link multiplexers includes a delay buffer to delay conveyance of a first bit so that it remains substantially synchronized with a second bit.
    Type: Application
    Filed: October 17, 2008
    Publication date: February 12, 2009
    Applicant: Broadcom Corporation
    Inventors: Abbas AMIRICHIMEH, Howard BAUMER, Dwight ODA
  • Patent number: 7463651
    Abstract: Aspects of the invention may include a method for encoding data in a multilane communication channel. The method may include generating from existing control characters in a character set, an expanded control character which may be utilized for controlling data in each lane of the multilane communication channel. The expanded control character may utilize spare link bandwidth. At least one of the lanes may be controlled using at least one of the generated existing control characters. If a first control character is an alignment character, a second control character may be selected from any other existing control characters. The first control character may be combined with the second control character to generate a third control character. Each of the combinations of the first and second control characters may represent an expanded control character. The existing control characters may be a configuration character, an idle character or an encapsulation character.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: December 9, 2008
    Assignee: Broadcom Corporation
    Inventors: Martin Lund, Howard Baumer
  • Patent number: 7450530
    Abstract: A cross link multiplexer bus comprising a plurality of cross link multiplexers and a plurality of interconnects. The plurality of cross link multiplexers has a destination port configured to receive a signal and an origin port configured to produce said signal. The plurality of interconnects has a set of interconnects coupled between a pair of adjacent cross link multiplexers. The signal is capable of being represented as a series of characters. A character is capable of being represented as a first data bit, a second data bit, and a control bit. A first interconnect is configured to convey the first data bit. A second interconnect is configured to convey the second data bit. A third interconnect is configured to convey the control bit. The third interconnect is positioned substantially between the first interconnect and the second interconnect.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: November 11, 2008
    Assignee: Broadcom Corporation
    Inventors: Abbas Amirichimeh, Howard Baumer, Dwight Oda
  • Patent number: 7450529
    Abstract: A cross link multiplexer bus comprising a plurality of cross link multiplexers and a plurality of interconnects. The plurality of cross link multiplexers has a destination port configured to receive a signal and an origin port configured to produce the signal. The plurality of interconnects has a set of interconnects coupled between a pair of adjacent cross link multiplexers. Preferably, the destination port is in a first cross link multiplexer, the origin port is in a second cross link multiplexer, and the first cross link multiplexer is configured to convey the signal toward the second cross link multiplexer in more than one direction. In an embodiment, the signal is capable of being represented as a series of characters, and a character is capable of being represented as a number of bits. Preferably, the plurality of cross link multiplexers includes a delay buffer to delay conveyance of a first bit so that it remains substantially synchronized with a second bit.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: November 11, 2008
    Assignee: Broadcom Corporation
    Inventors: Abbas Amirichimeh, Howard Baumer, Dwight Oda
  • Publication number: 20080212665
    Abstract: A system is presented that monitors the quality of a communications channel with mirror receivers. A first receiver and a second receiver, coupled in parallel with the first receiver, receive a data signal transmitted over the communications channel. The second receiver generates an output signal. A signal integrity (SI) processor manipulates the output signal in order to determine the quality of the communications channel. The SI processor samples a phase-shifted version of the output signal, which has a phase shifted relative to a zero reference phase, and analyzes the phase-shifted version of the output signal for bit errors. In an embodiment, the SI processor manipulates the output signal to extract an eye diagram indicative of the quality of the communications channel. The SI processor non-intrusively determines the quality of the communications channel using the second receiver.
    Type: Application
    Filed: February 15, 2008
    Publication date: September 4, 2008
    Applicant: Broadcom Corporation
    Inventors: Jay Proano, Howard Baumer, Chung-Jue Chen, Ali Ghiasi, Vasudevan Parthasarathy, Rajesh Satapathy, Linda Ying
  • Publication number: 20080186987
    Abstract: A multi-port SERDES transceiver includes multiple parallel ports and serial ports, and includes the flexibility to connect any one of the parallel ports to another parallel port or to a serial port, or both. Furthermore, the multi-port transceiver chip can connect any one of serial ports to another serial port or to one of the parallel ports. The substrate layout of the multi-port SERDES transceiver chip is configured so that the parallel ports and the serial ports are on the outer perimeter of the substrate. A logic core is at the center of the substrate, where the logic core operates the serial and parallel data ports, and the bus that connects the data ports. The bus can be described as a “ring” structure (or donut “structure”) around the logic core, and is configured between the logic core and the data ports. The ring structure of the bus provides efficient communication between the logic core and the various data ports.
    Type: Application
    Filed: April 4, 2008
    Publication date: August 7, 2008
    Applicant: Broadcom Corporation
    Inventor: Howard A. Baumer
  • Publication number: 20080170586
    Abstract: A method and system for a multi-rate Media Access Control layer (MAC) to Physical layer (PHY) interface is provided. The method to provide a multi-rate Media Access Control layer (MAC) interface comprises receiving a first set of signals, sampling the first set of signals to determine a type of interface to be used to transmit or receive the first set of signals or a subset of the first set of signals, generating a select signal indicating type of interface to be used based on the sampling step and transmitting the first set of signals or a subset of the first set of signals using the interface indicated by the select signal.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 17, 2008
    Applicant: Broadcom Corporation
    Inventors: Gary S. Huff, Howard A. Baumer
  • Publication number: 20080117963
    Abstract: Methods and systems for minimizing distortions in an analog data signal include equalizing the analog data signal at a receive end. In an embodiment, the invention adapts equalization parameters to a signal path associated with the analog data signal. Adaptive control logic is implemented with analog and/or digital components. In an embodiment, the invention equalizes a discreet-time analog representation of an analog data signal. In an embodiment, the invention digitally controls equalization parameters. In an embodiment, a resultant equalized analog data signal is digitized. In an example implementation, an analog data signal is sampled, a quality of the samples is measured, and one or more equalization parameters are adjusted with digital controls as needed to minimize distortion of the samples. The equalized samples are then digitized. The present invention is suitable for lower rate analog data signals and multi-gigabit data rate analog signals.
    Type: Application
    Filed: October 22, 2007
    Publication date: May 22, 2008
    Applicant: Broadcom Corporation
    Inventors: Aaron Buchwald, Xicheng Jiang, Hui Wang, Howard A. Baumer, Avanindra Madisetti
  • Patent number: 7373561
    Abstract: An integrated packet bit error rate tester includes a packet transmit circuit that has a first memory for storing transmit packet data and is connectable to a channel under test. A packet receive circuit includes a second memory for storing received packet data and is connectable to the channel under test. An interface is used for programming the packet transmit and packet receive circuits. The packet transmit circuit can generate an arbitrary 10G SERDES packet in response to commands from the interface. The packet receive circuit can determine a bit error rate of the channel under test. The second memory can capture received packet data upon any one of (a) after a pre-programmed pattern is detected, (b) after a pre-programmed pattern is lost, and (c) after an error is detected.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: May 13, 2008
    Assignee: Broadcom Corporation
    Inventors: Howard A Baumer, Peiqing Wang
  • Publication number: 20080095189
    Abstract: Aspects of a system for physical layer aggregation may include one or more switch ICs and/or physical (PHY) layer ICs that enable reception of data packets via a medium access control (MAC) layer protocol entity. Each of the received data packets may be fragmented into a plurality of fragment payloads. Each of the plurality of fragment payloads may be sent to a PHY layer protocol entity instance a physical layer protocol entity instance selected from a plurality of physical layer protocol entity instances.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 24, 2008
    Inventors: Howard Frazier, Patricia Thaler, Ali Ghiasi, Howard Baumer
  • Patent number: 7355987
    Abstract: A multi-port Serdes transceiver includes multiple parallel ports and serial ports, and includes the flexibility to connect any one of the parallel ports to another parallel port or to a serial port, or both. Furthermore, the multi-port transceiver chip can connect any one of serial ports to another serial port or to one of the parallel ports. The substrate layout of the multi-port Serdes transceiver chip is configured so that the parallel ports and the serial ports are on the outer perimeter of the substrate. A logic core is at the center of the substrate, where the logic core operates the serial and parallel data ports, and the bus that connects the data ports. The bus can be described as a “ring” structure (or donut “structure”) around the logic core, and is configured between the logic core and the data ports. The ring structure of the bus provides efficient communication between the logic core and the various data ports.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 8, 2008
    Assignee: Broadcom Corporation
    Inventor: Howard A. Baumer
  • Publication number: 20080079614
    Abstract: A block encoder flexibly encodes K codes to produce an encoded data block. The block encoder receives an unformatted block of 10 Gigabit Media Independent Interface (XGMII) data. The unformatted block of data includes data and/or K characters, both of which can be located in any position of the unformatted block. The block encoder inserts data characters into a first set of slots of the encoded data block. The block encoder encodes K characters to produce corresponding encoded K characters. Each encoded K character includes a link field, a position field and a recoded value field. The encoded K characters are inserted into a second set of slots of the encoded data block. A synchronization header is attached to the encoded data block to distinguish control blocks from pure data blocks. The header and encoded data block are subsequently scrambled in preparation for transmission.
    Type: Application
    Filed: September 19, 2007
    Publication date: April 3, 2008
    Applicant: Broadband Corporation
    Inventor: Howard Baumer
  • Patent number: 7339986
    Abstract: A method is presented that monitors the quality of a communications channel. The method includes receiving a data signal and establishing a zero reference phase of the received data signal. The method further includes generating a phase-shifted data signal by phase shifting the received data signal relative to the zero reference phase, and sampling the phase-shifted data signal for one or more phase-shift positions. A zero reference phase is reestablished between sampling at each of the phase-shift positions. The method also includes detecting bit errors in the phase-shifted data signal at each of the phase-shift positions in order to provide a communications channel quality measurement. In an embodiment, the method includes generating an eye diagram according to a count of detected bit errors relative to a count of detected bits. The eye diagram characterizes the quality of the communications channel.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: March 4, 2008
    Assignee: Broadcom Corporation
    Inventors: Jay Proano, Howard Baumer, Chung-Jue Chen, Ali Ghiasi, Vasudevan Parthasarathy, Rajesh Satapathy, Linda Ying