Patents by Inventor Howard G. Lange
Howard G. Lange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11448863Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: GrantFiled: January 19, 2021Date of Patent: September 20, 2022Assignee: LUMENCO, LLCInventors: Mark A. Raymond, Hector Andres Porras Soto, Howard G. Lange
-
Publication number: 20210173187Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: ApplicationFiled: January 19, 2021Publication date: June 10, 2021Inventors: MARK A. RAYMOND, HECTOR ANDRES PORRAS SOTO, HOWARD G. LANGE
-
Patent number: 10901191Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: GrantFiled: November 28, 2018Date of Patent: January 26, 2021Assignee: LUMENCO, LLCInventors: Mark A. Raymond, Hector Andres Porras Soto, Howard G. Lange
-
Patent number: 10317691Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light so as to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: GrantFiled: May 8, 2017Date of Patent: June 11, 2019Assignee: LUMENCO, LLCInventors: Mark A. Raymond, Hector Andres Porras Soto, Howard G. Lange
-
Publication number: 20190092084Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: ApplicationFiled: November 28, 2018Publication date: March 28, 2019Inventors: MARK A. RAYMOND, HECTOR ANDRES PORRAS SOTO, HOWARD G. LANGE
-
Patent number: 10189294Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light so as to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: GrantFiled: May 23, 2016Date of Patent: January 29, 2019Assignee: LUMENCO, LLCInventors: Mark A. Raymond, Hector Andres Porras Soto, Howard G. Lange
-
Publication number: 20170242263Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light so as to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: ApplicationFiled: May 8, 2017Publication date: August 24, 2017Inventors: MARK A. RAYMOND, HECTOR ANDRES PORRAS SOTO, HOWARD G. LANGE
-
Publication number: 20170157973Abstract: A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light so as to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.Type: ApplicationFiled: May 23, 2016Publication date: June 8, 2017Inventors: MARK A. RAYMOND, HECTOR ANDRES PORRAS SOTO, HOWARD G. LANGE
-
Publication number: 20150107665Abstract: A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight and providing longer path lengths in the photovoltaic (PV) material. The assembly includes a PV device including a layer of PV material and a protective top covering the PV material (e.g., a planar glass cover applied with adhesive to the PV material). The assembly further includes a PV enhancement film formed of a substantially transparent material, and film is applied to at least a portion of the protective top such as with a substantially transparent adhesive. The PV enhancement film includes a plurality of absorption enhancement structures on the substrate opposite the PV device. Each absorption enhancement structure includes a light receiving surface that refracts incident light striking the PV enhancement film to provide an average path length ratio of greater than about 1.20 in the layer of PV material.Type: ApplicationFiled: December 22, 2014Publication date: April 23, 2015Applicant: GLT FUTURE, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Patent number: 8921681Abstract: A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight and providing longer path lengths in the photovoltaic (PV) material. The assembly includes a PV device including a layer of PV material and a protective top covering the PV material (e.g., a planar glass cover applied with adhesive to the PV material). The assembly further includes a PV enhancement film formed of a substantially transparent material, and film is applied to at least a portion of the protective top such as with a substantially transparent adhesive. The PV enhancement film includes a plurality of absorption enhancement structures on the substrate opposite the PV device. Each absorption enhancement structure includes a light receiving surface that refracts incident light striking the PV enhancement film to provide an average path length ratio of greater than about 1.20 in the layer of PV material.Type: GrantFiled: May 23, 2011Date of Patent: December 30, 2014Assignee: GLT Future, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Patent number: 8338693Abstract: A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight. The assembly includes one or more solar cells that each include a light-receiving surface. A fraction of light incident upon the light-receiving surface is reflected. The assembly includes a photovoltaic (PV) enhancement film of transparent material such as plastic positioned to cover at least a portion of the light-receiving surface. The PV enhancement film includes a substrate positioned proximate to or abutting the light-receiving surface. The film includes a plurality of total internal reflection (TIR) elements on the substrate opposite the light-receiving surface.Type: GrantFiled: January 16, 2009Date of Patent: December 25, 2012Assignee: Genie Lens Technology, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Patent number: 8253780Abstract: An image display system for displaying interlaced images to achieve three dimensional effects. The system includes a user electronic device, such as a computer or television, with a display with a faceplate. The electronic device operates the display to generate an image that includes an interlaced portion at an inner display surface or location at an internal offset distance from an outer surface of the faceplate. The image display system includes a lens array with lenticules configured to focus through the lens array material, through an air gap, and into the faceplate the internal offset distance rather than simply on the back of the lens array. The display system may also include a mounting mechanism for selectively positioning the lens array relative to the faceplate to adjust the size of the air gap so as to focus the lens array onto the image being displayed within the display device.Type: GrantFiled: March 4, 2008Date of Patent: August 28, 2012Assignee: Genie Lens Technology, LLCInventors: Mark A. Raymond, Howard G. Lange, William K. Seifert
-
Patent number: 8230851Abstract: A solar power system for supplying concentrated solar energy. The system includes a cylindrical absorber tube carrying the working fluid and a concentrator assembly, which includes an array of linear lenses such as Fresnel lenses. The concentrator assembly includes a planar optical wafer paired with each of the linear lenses to direct light, which the lenses focus on a first edge of the wafers, onto the collector via a second or output edge of the wafers. Each of the optical wafers is formed from a light transmissive material and acts as a light “pipe.” The lens array is spaced apart a distance from the first edges of the optical wafers. This distance or lens array height is periodically adjusted to account for seasonal changes in the Sun's position, such that the focal point of each linear lens remains upon the first edge of one of the optical wafers yearlong.Type: GrantFiled: May 16, 2011Date of Patent: July 31, 2012Assignee: Genie Lens Technology, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Patent number: 8048250Abstract: A method for manufacturing a photovoltaic (PV) enhancement film. The method includes providing an extrusion device with an embossing roller engraved to have a pattern corresponding to a set of absorption enhancement structures. The method includes feeding a web of substantially transparent material, such as an UV-stabilized blend of polycarbonate or acrylic. The method includes rolling the embossing roller against a first side of the web to form the absorption enhancement structures. The absorption enhancement structures each include a light receiving surface that directs at least a portion of light that passes through a second side of the web toward the first side back toward the second side (e.g., the structures may be configured to provide total internal reflection when applied to a PV device). The structures refract incident light to provide an average path length ratio of greater than about 1.10 in the PV device.Type: GrantFiled: May 6, 2009Date of Patent: November 1, 2011Assignee: Genie Lens Technologies, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Publication number: 20110232721Abstract: A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight and providing longer path lengths in the photovoltaic (PV) material. The assembly includes a PV device including a layer of PV material and a protective top covering the PV material (e.g., a planar glass cover applied with adhesive to the PV material). The assembly further includes a PV enhancement film formed of a substantially transparent material, and film is applied to at least a portion of the protective top such as with a substantially transparent adhesive. The PV enhancement film includes a plurality of absorption enhancement structures on the substrate opposite the PV device. Each absorption enhancement structure includes a light receiving surface that refracts incident light striking the PV enhancement film to provide an average path length ratio of greater than about 1.20 in the layer of PV material.Type: ApplicationFiled: May 23, 2011Publication date: September 29, 2011Applicant: GENIE LENS TECHNOLOGIES, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Publication number: 20110214665Abstract: A solar power system for supplying concentrated solar energy. The system includes a cylindrical absorber tube carrying the working fluid and a concentrator assembly, which includes an array of linear lenses such as Fresnel lenses. The concentrator assembly includes a planar optical wafer paired with each of the linear lenses to direct light, which the lenses focus on a first edge of the wafers, onto the collector via a second or output edge of the wafers. Each of the optical wafers is formed from a light transmissive material and acts as a light “pipe.” The lens array is spaced apart a distance from the first edges of the optical wafers, This distance or lens array height is periodically adjusted to account for seasonal changes in the Sun's position, such that the focal point of each linear lens remains upon the first edge of one of the optical wafers yearlong.Type: ApplicationFiled: May 16, 2011Publication date: September 8, 2011Applicant: GENIE LENS TECHNOLOGIES, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Patent number: 7968790Abstract: A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight and providing longer path lengths in the photovoltaic (PV) material. The assembly includes a PV device including a layer of PV material and a protective top covering the PV material (e.g., a planar glass cover applied with adhesive to the PV material). The assembly further includes a PV enhancement film formed of a substantially transparent material, and film is applied to at least a portion of the protective top such as with a substantially transparent adhesive. The PV enhancement film includes a plurality of absorption enhancement structures on the substrate opposite the PV device. Each absorption enhancement structure includes a light receiving surface that refracts incident light striking the PV enhancement film to provide an average path length ratio of greater than about 1.20 in the layer of PV material.Type: GrantFiled: March 19, 2009Date of Patent: June 28, 2011Assignee: Genie Lens Technologies, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Patent number: 7946286Abstract: A solar power system for supplying concentrated solar energy. The system includes a cylindrical absorber tube carrying the working fluid and a concentrator assembly, which includes an array of linear lenses such as Fresnel lenses. The concentrator assembly includes a planar optical wafer paired with each of the linear lenses to direct light, which the lenses focus on a first edge of the wafers, onto the collector via a second or output edge of the wafers. Each of the optical wafers is formed from a light transmissive material and acts as a light “pipe.” The lens array is spaced apart a distance from the first edges of the optical wafers. This distance or lens array height is periodically adjusted to account for seasonal changes in the Sun's position, such that the focal point of each linear lens remains upon the first edge of one of the optical wafers yearlong.Type: GrantFiled: September 23, 2010Date of Patent: May 24, 2011Assignee: Genie Lens Technologies, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss
-
Publication number: 20110079267Abstract: A concentration system or solar concentrator for supplying concentrated solar energy. The system includes a lens array with linear lenses focusing light received on an outer surface onto a number of focal point or focused lines of light. The system includes a light wafer with a substantially planar body formed of a thickness of a light transmissive material. The body includes a top surface facing the lens array and receiving the focused light from at least one the linear lens and further includes a bottom surface opposite the top surface. The light wafer includes a ray splitter, in the form of a triangular air gap, paired to each linear lens at or near a focal point of the paired lens to direct the received focused light into the body or towards edges or sides of the body where a solar collector such as a thermal or photovoltaic collector is positioned.Type: ApplicationFiled: October 1, 2010Publication date: April 7, 2011Applicant: GENIE LENS TECHNOLOGIES, LLCInventors: MARK A. RAYMOND, HOWARD G. LANGE, SETH WEISS
-
Publication number: 20110067687Abstract: A solar power system for supplying concentrated solar energy. The system includes a cylindrical absorber tube carrying the working fluid and a concentrator assembly, which includes an array of linear lenses such as Fresnel lenses. The concentrator assembly includes a planar optical wafer paired with each of the linear lenses to direct light, which the lenses focus on a first edge of the wafers, onto the collector via a second or output edge of the wafers. Each of the optical wafers is formed from a light transmissive material and acts as a light “pipe.” The lens array is spaced apart a distance from the first edges of the optical wafers. This distance or lens array height is periodically adjusted to account for seasonal changes in the Sun's position, such that the focal point of each linear lens remains upon the first edge of one of the optical wafers yearlong.Type: ApplicationFiled: September 23, 2010Publication date: March 24, 2011Applicant: GENIE LENS TECHNOLOGIES, LLCInventors: Mark A. Raymond, Howard G. Lange, Seth Weiss