Patents by Inventor Howard H. Tang

Howard H. Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906380
    Abstract: The disclosed invention provides a bridge voltage inversion circuit for vacuum gauge and a pressure gauge sensor that includes the bridge voltage inversion circuit. The bridge voltage inversion circuit for a pressure gauge includes a reference capacitance, a sensor capacitance, and a transformer including a primary winding and a secondary winding that outputs a bridge voltage. The reference capacitor is connected to a first side of the secondary winding of the transformer, and the sensor capacitor is connected to a second side of the secondary winding of the transformer. The sensor capacitor senses and responds to a pressure, and a capacitance of the sensor capacitor is at a minimum when the pressure is at vacuum. The capacitance of the sensor capacitor at vacuum is less than a capacitance of the reference capacitor.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: February 20, 2024
    Assignee: SUMITOMO (SHI) CRYOGENICS OF AMERICA, INC.
    Inventors: Howard H. Tang, Scott Michael Harris
  • Publication number: 20220196502
    Abstract: The disclosed invention provides a bridge voltage inversion circuit for vacuum gauge and a pressure gauge sensor that includes the bridge voltage inversion circuit. The bridge voltage inversion circuit for a pressure gauge includes a reference capacitance, a sensor capacitance, and a transformer including a primary winding and a secondary winding that outputs a bridge voltage. The reference capacitor is connected to a first side of the secondary winding of the transformer, and the sensor capacitor is connected to a second side of the secondary winding of the transformer. The sensor capacitor senses and responds to a pressure, and a capacitance of the sensor capacitor is at a minimum when the pressure is at vacuum. The capacitance of the sensor capacitor at vacuum is less than a capacitance of the reference capacitor.
    Type: Application
    Filed: April 23, 2020
    Publication date: June 23, 2022
    Inventors: Howard H. TANG, Scott Michael HARRIS
  • Patent number: 11158259
    Abstract: An apparatus receives current image frame data and data relating to at least one previous image frame for an electronic display. One or more parameters related to hysteresis of transistors in the electronic display are sensed. A correlation device, such as a look-up table, receives the sensed parameter or parameters and the data relating to one or more image frames, and uses this information, at least in part, to output an appropriate compensation signal for the current image frame data. The compensated current image frame data may then be supplied to the electronic display to reduce or eliminate the effects of hysteresis on the displayed image.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: October 26, 2021
    Assignee: Apple Inc.
    Inventors: Chaohao Wang, Chih-Wei Yeh, Chin-Wei Lin, Hung Sheng Lin, Hyunwoo Nho, Injae Hwang, Jie Won Ryu, Junhua Tan, Paolo Sacchetto, Rui Zhang, Shengkui Gao, Sun-Il Chang, Wei H. Yao, Howard H. Tang
  • Publication number: 20210049962
    Abstract: An apparatus receives current image frame data and data relating to at least one previous image frame for an electronic display. One or more parameters related to hysteresis of transistors in the electronic display are sensed. A correlation device, such as a look-up table, receives the sensed parameter or parameters and the data relating to one or more image frames, and uses this information, at least in part, to output an appropriate compensation signal for the current image frame data. The compensated current image frame data may then be supplied to the electronic display to reduce or eliminate the effects of hysteresis on the displayed image.
    Type: Application
    Filed: November 3, 2020
    Publication date: February 18, 2021
    Inventors: Chaohao Wang, Chih-Wei Yeh, Chin-Wei Lin, Hung Sheng Lin, Hyunwoo Nho, Injae Hwang, Jie Won Ryu, Junhua Tan, Paolo Sacchetto, Rui Zhang, Shengkui Gao, Sun-Il Chang, Wei H. Yao, Howard H. Tang
  • Patent number: 10825385
    Abstract: An apparatus receives current image frame data and data relating to at least one previous image frame for an electronic display. One or more parameters related to hysteresis of transistors in the electronic display are sensed. A correlation device, such as a look-up table, receives the sensed parameter or parameters and the data relating to one or more image frames, and uses this information, at least in part, to output an appropriate compensation signal for the current image frame data. The compensated current image frame data may then be supplied to the electronic display to reduce or eliminate the effects of hysteresis on the displayed image.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: November 3, 2020
    Assignee: Apple Inc.
    Inventors: Chaohao Wang, Chih-Wei Yeh, Chin-Wei Lin, Hung Sheng Lin, Hyunwoo Nho, Injae Hwang, Jie Won Ryu, Junhua Tan, Paolo Sacchetto, Rui Zhang, Shengkui Gao, Sun-Il Chang, Wei H. Yao, Howard H. Tang
  • Patent number: 10395611
    Abstract: Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: August 27, 2019
    Assignee: Apple Inc.
    Inventors: Fenghua Zheng, Howard H. Tang, James C. Aamold, Sandro H. Pintz, Chaohao Wang, Paolo Sacchetto
  • Patent number: 10380937
    Abstract: The disclosure relates to systems and methods for reducing VCOM settling periods. A number of pixels is sub-divided into a plurality of regions. The pixels are configured to transmit light. A common voltage (VCOM) driving circuit is configured to drive a common electrode of the pixels. Moreover, each of a number of VCOM driving circuits includes a variable resistor configured to be driven to a resistance level based at least in part on which region of the plurality of regions includes an active pixel within the region. Furthermore, a resistance level is set and based at least in part on where the active pixel is located.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 13, 2019
    Assignee: Apple Inc.
    Inventors: Howard H. Tang, Paolo Sacchetto, Chaohao Wang, Szu-Hsien Lee, Patrick Bennett, Fenghua Zheng
  • Patent number: 10311822
    Abstract: Systems and methods are provided for improving displayed image quality of an electronic display with reduced power consumption. In some embodiments, a display pixel in the electronic display includes a pixel electrode and a common electrode. A pixel electrode driver electrically coupled to the first display pixel writes the display pixel by supplying a pixel voltage signal to the pixel electrode. A common electrode driver electrically coupled to the common electrode includes a power amplifier that supplies a common voltage signal to the common electrode to predictively offset net charge accumulation expected in the common electrode; a first power supply rail selectively connectable to the power amplifier based on a target voltage of the common voltage signal; and a second power supply rail selectively connectable to the power amplifier based on the target voltage, in which the first and second power supply rails supply different voltages when connected.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: June 4, 2019
    Assignee: APPLE INC.
    Inventors: Fenghua Zheng, Howard H. Tang, Sandro H. Pintz
  • Patent number: 10276085
    Abstract: This application relates to systems, methods, and apparatus for compensating voltage for pixels of a display panel based on the location of the pixels within the display panel. An amount of voltage compensation is assigned to each pixel or a group of pixels within the display panel in accordance with a calibration of the display panel. During operation of the display panel, pixel data is generated for a location of the display panel, and the pixel data is modified according to the amount of voltage compensation corresponding to the location. By modifying the pixel data in this way, spatial variations in voltage across the display panel can be mitigated in order to reduce the occurrence of certain display artifacts at the display panel.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: April 30, 2019
    Assignee: Apple Inc.
    Inventors: Chaohao Wang, Paolo Sacchetto, Marc Albrecht, Christopher P. Tann, Shih-Chyuan Fan Jiang, Howard H. Tang, James E. C. Brown, Zhibing Ge
  • Patent number: 10043472
    Abstract: A display device may include a source line that provides a data line signal to a pixel of the display device, a gate line that provides a gate signal to a switches associated with the pixel, and a voltage gate line disposed parallel to the source line and coupled to the gate line at a cross point node. The display device may also include a driver circuit that receives a pixel value to provide to the pixel, determines a compensation amount for the pixel value based on an expected kickback voltage present on the pixel due to a coupling effect between the source line and the voltage gate line, generates a compensated data line signal based on the compensation value and the pixel value, and provides the compensated data line signal to the pixel via the source line.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: August 7, 2018
    Assignee: Apple Inc.
    Inventors: Chaohao Wang, Paolo Sacchetto, Howard H. Tang
  • Patent number: 10008139
    Abstract: A display device may include a plurality of pixels, a plurality of source lines that may provide a plurality of data line signals to the plurality of pixels, a plurality of gate lines that may provide a plurality of gate signals to a plurality of switches associated with the plurality of pixels, and a plurality of voltage gate lines disposed parallel to the plurality of source lines and coupled to the plurality of gate lines at a plurality of cross point nodes. The plurality of cross point nodes are positioned in a pseudo random order across the display device.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: June 26, 2018
    Assignee: APPLE INC.
    Inventors: Howard H. Tang, Wei Chen, Paolo Sacchetto, Chaohao Wang, Chun-Yao Huang, Hao-Lin Chiu
  • Publication number: 20180082634
    Abstract: An apparatus receives current image frame data and data relating to at least one previous image frame for an electronic display. One or more parameters related to hysteresis of transistors in the electronic display are sensed. A correlation device, such as a look-up table, receives the sensed parameter or parameters and the data relating to one or more image frames, and uses this information, at least in part, to output an appropriate compensation signal for the current image frame data. The compensated current image frame data may then be supplied to the electronic display to reduce or eliminate the effects of hysteresis on the displayed image.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 22, 2018
    Inventors: Chaohao Wang, Chih-Wei Yeh, Chin-Wei Lin, Hung Sheng Lin, Hyunwoo Nho, Injae Hwang, Jie Won Ryu, Junhua Tan, Paolo Sacchetto, Rui Zhang, Shengkui Gao, Sun-Il Chang, Wei H. Yao, Howard H. Tang
  • Publication number: 20180068624
    Abstract: Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 8, 2018
    Inventors: Fenghua Zheng, Howard H. Tang, James C. Aamold, Sandro H. Pintz, Chaohao Wang, Paolo Sacchetto
  • Publication number: 20180061355
    Abstract: Systems and methods are provided for improving displayed image quality of an electronic display with reduced power consumption. In some embodiments, a display pixel in the electronic display includes a pixel electrode and a common electrode. A pixel electrode driver electrically coupled to the first display pixel writes the display pixel by supplying a pixel voltage signal to the pixel electrode. A common electrode driver electrically coupled to the common electrode includes a power amplifier that supplies a common voltage signal to the common electrode to predictively offset net charge accumulation expected in the common electrode; a first power supply rail selectively connectable to the power amplifier based on a target voltage of the common voltage signal; and a second power supply rail selectively connectable to the power amplifier based on the target voltage, in which the first and second power supply rails supply different voltages when connected.
    Type: Application
    Filed: August 2, 2017
    Publication date: March 1, 2018
    Inventors: Fenghua Zheng, Howard H. Tang, Sandro H. Pintz
  • Patent number: 9761188
    Abstract: Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: September 12, 2017
    Assignee: APPLE INC.
    Inventors: Fenghua Zheng, Howard H. Tang, James C. Aamold, Sandro H. Pintz, Chaohao Wang, Paolo Sacchetto
  • Publication number: 20170061864
    Abstract: The disclosure relates to systems and methods for reducing VCOM settling periods. A number of pixels is sub-divided into a plurality of regions. The pixels are configured to transmit light. A common voltage (VCOM) driving circuit is configured to drive a common electrode of the pixels. Moreover, each of a number of VCOM driving circuits includes a variable resistor configured to be driven to a resistance level based at least in part on which region of the plurality of regions includes an active pixel within the region. Furthermore, a resistance level is set and based at least in part on where the active pixel is located.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 2, 2017
    Inventors: Howard H. Tang, Paolo Sacchetto, Chaohao Wang, Szu-Hsien Lee, Patrick Bennett, Fenghua Zheng
  • Publication number: 20170061837
    Abstract: A display device may include a plurality of pixels, a plurality of source lines that may provide a plurality of data line signals to the plurality of pixels, a plurality of gate lines that may provide a plurality of gate signals to a plurality of switches associated with the plurality of pixels, and a plurality of voltage gate lines disposed parallel to the plurality of source lines and coupled to the plurality of gate lines at a plurality of cross point nodes. The plurality of cross point nodes are positioned in a pseudo random order across the display device.
    Type: Application
    Filed: January 14, 2016
    Publication date: March 2, 2017
    Inventors: Howard H. Tang, Wei Chen, Paolo Sacchetto, Chaohao Wang, Chun-Yao Huang, Hao-Lin Chiu
  • Publication number: 20170018219
    Abstract: This application relates to systems, methods, and apparatus for compensating voltage for pixels of a display panel based on the location of the pixels within the display panel. An amount of voltage compensation is assigned to each pixel or a group of pixels within the display panel in accordance with a calibration of the display panel. During operation of the display panel, pixel data is generated for a location of the display panel, and the pixel data is modified according to the amount of voltage compensation corresponding to the location. By modifying the pixel data in this way, spatial variations in voltage across the display panel can be mitigated in order to reduce the occurrence of certain display artifacts at the display panel.
    Type: Application
    Filed: December 17, 2015
    Publication date: January 19, 2017
    Inventors: Chaohao WANG, Paolo SACCHETTO, Marc ALBRECHT, Christopher P. TANN, Shih-Chyuan FAN JIANG, Howard H. TANG, James E. C. BROWN, Zhibing GE
  • Publication number: 20160260407
    Abstract: Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.
    Type: Application
    Filed: March 6, 2015
    Publication date: September 8, 2016
    Inventors: Fenghua Zheng, Howard H. Tang, James C. Aamold, Sandro H. Pintz, Chaohao Wang, Paolo Sacchetto
  • Publication number: 20160111054
    Abstract: A display device may include a source line that provides a data line signal to a pixel of the display device, a gate line that provides a gate signal to a switches associated with the pixel, and a voltage gate line disposed parallel to the source line and coupled to the gate line at a cross point node. The display device may also include a driver circuit that receives a pixel value to provide to the pixel, determines a compensation amount for the pixel value based on an expected kickback voltage present on the pixel due to a coupling effect between the source line and the voltage gate line, generates a compensated data line signal based on the compensation value and the pixel value, and provides the compensated data line signal to the pixel via the source line.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Chaohao WANG, Paolo SACCHETTO, Howard H. TANG