Patents by Inventor Howard I. Pryor

Howard I. Pryor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10939989
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: March 9, 2021
    Assignees: The General Hospital Corporation, The Charles Stark Draper Laboratory, Inc.
    Inventors: David M. Hoganson, Howard I. Pryor, Ira Spool, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Patent number: 10327885
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: June 25, 2019
    Assignees: The General Hospital Corporation, The Charles Stark Draper Laboratory
    Inventors: David M. Hoganson, Howard I. Pryor, Ira Spool, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Publication number: 20180256312
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Application
    Filed: November 1, 2017
    Publication date: September 13, 2018
    Inventors: David M. Hoganson, Howard I. Pryor, Ira Spool, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Publication number: 20150366651
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Application
    Filed: February 6, 2015
    Publication date: December 24, 2015
    Applicants: THE CHARLES STARK DRAPER LABORATORY, THE GENERAL HOSPITAL CORPORATION
    Inventors: David M. Hoganson, Howard I. Pryor, Ira Spool, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Patent number: 8951302
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: February 10, 2015
    Assignees: The General Hospital Corporation, The Charles Stark Draper Laboratory
    Inventors: Howard I. Pryor, Ira Spool, David M. Hoganson, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Patent number: 8591597
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: November 26, 2013
    Assignee: The General Hospital Corporation
    Inventors: David M. Hoganson, Joseph P. Vacanti, Howard I. Pryor
  • Publication number: 20110195056
    Abstract: The invention generally features methods for generating hepatocytes from a variety of pluripotent stem cells, including adipose mesenchymal stem cells, therapeutic compositions featuring such cells, and methods of using them for the treatment of subjects.
    Type: Application
    Filed: July 31, 2009
    Publication date: August 11, 2011
    Applicant: The General Hospital Corporation
    Inventors: Howard I. Pryor, Joseph P. Vacanti, David H. Lum, Tim D. Ahfeldt, Chad Cowan
  • Publication number: 20110129436
    Abstract: The present invention is directed to a method of preventing adhesions between two tissue surfaces. The method includes providing a film comprising a condensation polymer of glycerol and a diacid, wherein the film does not contain anti-inflammatory drugs and positioning the film between a first tissue surface and a second tissue surface under conditions effective to prevent adhesion between said first tissue surface and said second tissue surface.
    Type: Application
    Filed: February 17, 2009
    Publication date: June 2, 2011
    Applicant: THE GENERAL HOSPITAL CORPORATION
    Inventors: Howard I. Pryor, II, Cathryn A. Sundback, Joseph P. Vacanti
  • Publication number: 20110091930
    Abstract: A well-based flow system for cell culture is described which provides for flow of culture containing compounds for drug screening to be exposed to cells seeded on a membrane. The flow of medium may be planar or radial and means are provided for the removal of waste media through fluid outlets in fluid communication with the assay well plates through conduits. Methods of using the system for cell culture and drug toxicity screening are also provided including coculturing cells such as hepatocytes, stem cells, fibroblasts and smooth muscle cells and selectively exposing cells to test compounds.
    Type: Application
    Filed: February 13, 2009
    Publication date: April 21, 2011
    Applicant: The General Hospital Corporation
    Inventors: Joseph P. Vacanti, Howard I. Pryor, Craig M. Neville, Ira Spool
  • Publication number: 20100274353
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Application
    Filed: March 22, 2010
    Publication date: October 28, 2010
    Applicant: The General Hospital Corporation
    Inventors: Howard I. Pryor, David M. Hoganson, Joseph P. Vacanti
  • Publication number: 20100234678
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Application
    Filed: October 9, 2009
    Publication date: September 16, 2010
    Applicants: The General Hospital Corporation, The Charles Stark Draper Laboratory
    Inventors: Howard I. Pryor, Ira Spool, David M. Hoganson, Joseph P. Vacanti, Jeffrey T. Borenstein