Patents by Inventor Howard J. Halpern

Howard J. Halpern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230240553
    Abstract: An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 3, 2023
    Inventors: Howard J. Halpern, Boris Epel
  • Patent number: 11612336
    Abstract: An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: March 28, 2023
    Inventors: Howard J. Halpern, Boris Epel
  • Patent number: 11583203
    Abstract: The present invention provides an apparatus and a corresponding method useful for electron paramagnetic resonance imaging, in situ and in vivo, using high-isolation transmit/receive (TX/RX) coils, which, in some embodiments, provide microenvironmental images that are representative of particular internal structures in the human body and spatially resolved images of tissue/cell protein signals responding to conditions (such as hypoxia) that show the temporal sequence of certain biological processes, and, in some embodiments, that distinguish malignant tissue from healthy tissue. In some embodiments, the TX/RX coils are in a surface, volume or surface-volume configuration.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: February 21, 2023
    Inventor: Howard J. Halpern
  • Publication number: 20200260984
    Abstract: The present invention provides an apparatus and a corresponding method useful for electron paramagnetic resonance imaging, in situ and in vivo, using high-isolation transmit/receive (TX/RX) coils, which, in some embodiments, provide microenvironmental images that are representative of particular internal structures in the human body and spatially resolved images of tissue/cell protein signals responding to conditions (such as hypoxia) that show the temporal sequence of certain biological processes, and, in some embodiments, that distinguish malignant tissue from healthy tissue. In some embodiments, the TX/RX coils are in a surface, volume or surface-volume configuration.
    Type: Application
    Filed: February 25, 2020
    Publication date: August 20, 2020
    Inventor: Howard J. Halpern
  • Patent number: 10568537
    Abstract: The present invention provides an apparatus and a corresponding method useful for electron paramagnetic resonance imaging, in situ and in vivo, using high-isolation transmit/receive (TX/RX) coils, which, in some embodiments, provide microenvironmental images that are representative of particular internal structures in the human body and spatially resolved images of tissue/cell protein signals responding to conditions (such as hypoxia) that show the temporal sequence of certain biological processes, and, in some embodiments, that distinguish malignant tissue from healthy tissue. In some embodiments, the TX/RX coils are in a surface, volume or surface-volume configuration.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: February 25, 2020
    Inventor: Howard J. Halpern
  • Publication number: 20160324438
    Abstract: An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 10, 2016
    Inventors: Howard J. Halpern, Boris Epel
  • Patent number: 9392957
    Abstract: An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: July 19, 2016
    Inventors: Howard J. Halpern, Boris Epel
  • Publication number: 20140285198
    Abstract: The present invention provides an apparatus and a corresponding method useful for electron paramagnetic resonance imaging, in situ and in vivo, using high-isolation transmit/receive (TX/RX) coils, which, in some embodiments, provide microenvironmental images that are representative of particular internal structures in the human body and spatially resolved images of tissue/cell protein signals responding to conditions (such as hypoxia) that show the temporal sequence of certain biological processes, and, in some embodiments, that distinguish malignant tissue from healthy tissue. In some embodiments, the TX/RX coils are in a surface, volume or surface-volume configuration.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 25, 2014
    Inventor: Howard J. Halpern
  • Patent number: 8664955
    Abstract: The present invention provides an apparatus and a corresponding method useful for electron paramagnetic resonance imaging, in situ and in vivo, using high-isolation transmit/receive (TX/RX) coils, which, in some embodiments, provide microenvironmental images that are representative of particular internal structures in the human body and spatially resolved images of tissue/cell protein signals responding to conditions (such as hypoxia) that show the temporal sequence of certain biological processes, and, in some embodiments, that distinguish malignant tissue from healthy tissue. In some embodiments, the TX/RX coils are in a surface, volume or surface-volume configuration.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: March 4, 2014
    Inventor: Howard J. Halpern
  • Patent number: 5431901
    Abstract: Selective isotopic-labeling of spin label compounds, used in electron spin resonance spectroscopy to detect, measure and monitor the presence of paramagnetic species, increases the sensitivity of the electron spin resonance technique in assays for paramagnetic species, such as the determination of oxygen tension in solution or in a biological sample, like a living organism. Spin label compounds, such as nitroxides, like 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrroline-1-yloxyl (CTPO), are selectively, but not completely, isotopically-labeled, such as partially deuterated, to increase the sensitivity and reliability of assays employing electron spin resonance spectroscopic measurements.
    Type: Grant
    Filed: August 3, 1988
    Date of Patent: July 11, 1995
    Inventors: Howard J. Halpern, Beverly A. Teicher
  • Patent number: 4714886
    Abstract: Magnetic resonance images of the distribution of a substance within a sample are obtained by splaying a pair of magnetic field generating coils relative to each other to generate a magnetic field gradient along an axis of the sample. In other aspects, electron spin resonance data is derived from animal tissue, or images are derived from a sample that includes dissipative material, using a radio frequency signal of sufficiently low frequency.
    Type: Grant
    Filed: July 16, 1985
    Date of Patent: December 22, 1987
    Assignee: President and Fellows of Harvard College
    Inventor: Howard J. Halpern