Patents by Inventor Howard P. Apple

Howard P. Apple has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8768423
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: July 1, 2014
    Assignee: GLT Acquisition Corp.
    Inventors: Walter J. Shakespeare, William Henry Bennett, Jason T. Iceman, Howard P. Apple, Phillip William Wallace, Matthew J. Schurman
  • Publication number: 20120277554
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Applicant: GLT ACQUISITION CORP.
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Patent number: 8219172
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: July 10, 2012
    Assignee: GLT Acquisition Corp.
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Publication number: 20100113900
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Application
    Filed: March 4, 2009
    Publication date: May 6, 2010
    Applicant: GlucoLight Corporation
    Inventors: Walter J. Shakespeare, William Henry Bennett, Jason T. Iceman, Howard P. Apple, Phillip William Wallace, Matthew J. Schurman
  • Patent number: 6334683
    Abstract: A system for illuminating an eye useful for tracking movement of an eye during vision correction treatments includes a generally arcuate main body having. The main body is constructed and arranged to be mounted in spaced relation to an eye to be tracked. An infrared light source is carried by the main body on at least a significant portion of its inner circumferential surface to direct infrared light toward the eye being treated at an angle from about 20 to 45 degrees with respect to an iris base plane of the eye being tracked.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: January 1, 2002
    Assignee: LaserSight Technologies, Inc.
    Inventors: Howard P. Apple, Martin P. Nevitt, Xiaofeng Han
  • Publication number: 20010024266
    Abstract: A system for illuminating an eye useful for tracking movement of an eye during vision correction treatments includes a generally arcuate main body having. The main body is constructed and arranged to be mounted in spaced relation to an eye to be tracked. An infrared light source is carried by the main body on at least a significant portion of its inner circumferential surface to direct infrared light toward the eye being treated at an angle from about 20 to 45 degrees with respect to an iris base plane of the eye being tracked.
    Type: Application
    Filed: February 23, 2001
    Publication date: September 27, 2001
    Inventors: Howard P. Apple, Martin P. Nevitt, Xiaofeng Han
  • Patent number: 6193373
    Abstract: A system for illuminating an eye useful for tracking movement of an eye during vision correction treatments includes a generally arcuate main body having. The main body is constructed and arranged to be mounted in spaced relation to an eye to be tracked. An infrared light source is carried by the main body on at least a significant portion of its inner circumferential surface to direct infrared light toward the eye being treated at an angle from about 20 to 45 degrees with respect to an iris base plane of the eye being tracked.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: February 27, 2001
    Assignee: LaserSight Technologies, Inc.
    Inventors: Howard P. Apple, Martin P. Nevitt, Xiaofeng Han
  • Patent number: 6007202
    Abstract: A system for illuminating an eye useful for tracking movement of an eye during vision correction treatments includes a generally arcuate main body having. The main body is constructed and arranged to be mounted in spaced relation to an eye to be tracked. An infrared light source is carried by the main body on at least a significant portion of its inner circumferential surface to direct infrared light toward the eye being treated at an angle from about 20 to 45 degrees with respect to an iris base plane of the eye being tracked.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: December 28, 1999
    Assignee: LaserSight Technologies, Inc.
    Inventors: Howard P. Apple, Martin P. Nevitt, Xiaofeng Han
  • Patent number: 5724981
    Abstract: A method and apparatus are described for determining characteristics of peripheral arterial volume and compliance. A blood pressure cuff is inflated and deflated around a limb of the body and pressure measurements are taken. The volume of air removed from the cuff is determined in a quantifiable manner, such as by expelling air through an orifice of known characteristics or by means of a volume of known characteristics. The detected pressures and volume of air removed are used to compute oscillation volume, which in turn is used to display arterial capacity and compliance as a function of transmural pressure and time. Arterial capacity may be displayed in terms of arterial radius, arterial cross-sectional area, or arterial volume. Also, systolic and pulse pressures are determined using only these determined values.
    Type: Grant
    Filed: November 22, 1994
    Date of Patent: March 10, 1998
    Assignee: Johnson & Johnson Medical, Inc.
    Inventor: Howard P. Apple
  • Patent number: 5447163
    Abstract: A method and apparatus are described for determining characteristics of peripheral arterial volume and compliance. A blood pressure cuff is inflated and deflated around a limb of the body and pressure measurements are taken. The volume of air removed from the cuff is determined in a quantifiable manner, such as by expelling air through an orifice of known characteristics or using a volume of known characteristics. The detected pressures and volume of air removed are used to compute oscillation volume, which in turn is used to display arterial capacity and compliance as a function of transmural pressure and time. Arterial capacity may be displayed in terms of arterial radius, arterial cross-sectional area, or arterial volume. A display of these characteristics as a function of pre and post anesthetic administration is particularly useful to the anesthesiologist and surgeon.
    Type: Grant
    Filed: December 13, 1993
    Date of Patent: September 5, 1995
    Assignee: Critikon, Inc.
    Inventor: Howard P. Apple
  • Patent number: 5417220
    Abstract: A method and apparatus are described for determining characteristics of peripheral arterial volume and compliance. A blood pressure cuff is inflated and deflated around a limb of the body and pressure measurements are taken. The volume of air removed from the cuff is determined in a quantifiable manner, such as by expelling air through an orifice of known characteristics or by means of a volume of know characteristics. The detected pressures and volume of air removed are used to compute oscillation volume, which in turn is used to display arterial capacity and compliance as a function of transmural pressure and time. Arterial capacity may be displayed in terms of arterial radius, arterial cross-sectional area, or arterial volume. Also, systolic and pulse pressures are determined using only these determined values.
    Type: Grant
    Filed: May 3, 1993
    Date of Patent: May 23, 1995
    Assignee: Critikon, Inc.
    Inventor: Howard P. Apple
  • Patent number: 5311872
    Abstract: A method and apparatus are described for determining characteristics of peripheral arterial volume and compliance. A blood pressure cuff is inflated and deflated around a limb of the body and pressure measurements are taken. The volume of air removed from the cuff is determined in a quantifiable manner, such as by expelling air through an orifice of known characteristics or by means of a volume of know characteristics. The detected pressures and volume of air, removed are used to compute oscillation volume, which in turn is used to display arterial capacity and compliance as a function of transmural pressure and time. Arterial capacity may be displayed in terms of arterial radius, arterial cross-sectional area, or arterial volume. A display of these characteristics as a function of pre and post anesthetic administration is particularly useful to the anesthesiologist and surgeon.
    Type: Grant
    Filed: March 25, 1993
    Date of Patent: May 17, 1994
    Assignee: Critikon, Inc.
    Inventor: Howard P. Apple
  • Patent number: 5218968
    Abstract: A method and apparatus are described for determining characteristics of peripheral arterial volume and compliance. A blood pressure cuff is inflated and deflated around a limb of the body and pressure measurements are taken. The volume of air removed from the cuff is determined in a quantifiable manner, such as by expelling air through an orifice of known characteristics or by means of a volume of know characteristics. The detected pressures and volume of air removed are used to compute oscillation volume, which in turn is used to display arterial capacity and compliance as a function of transmural pressure and time. Arterial capacity may be displayed in terms of arterial radius, arterial cross-sectional area, or arterial volume. A display of these characteristics as a function of pre and post anesthetic administration is particularly useful to the anesthesiologist and surgeon.
    Type: Grant
    Filed: January 22, 1992
    Date of Patent: June 15, 1993
    Assignee: Critikon, Inc.
    Inventor: Howard P. Apple
  • Patent number: 5103833
    Abstract: A method and apparatus are described for determining characteristics of peripheral arterial volume and compliane. A blood pressure cuff is inflated and deflated around a limb of the body and pressure measurements are taken. The volume of air removed from the cuff is determined in a quantifiable manner, such as by expelling air through an orifice of known characteristics or by means of a volume of know characteristics. The detected pressures and volume of air removed are used to compute oscillation volume, which in turn is used to display arterial capacity and compliance as a function of transmural pressure and time. Arterial capacity may be displayed in terms of arterial radius, arterial cross-sectional area, or arterial volume. A display of these characteristics as a function of pre and post anesthetic administration is particularly useful to the anesthesiologist and surgeon.
    Type: Grant
    Filed: December 20, 1989
    Date of Patent: April 14, 1992
    Assignee: Critikon, Inc.
    Inventor: Howard P. Apple
  • Patent number: 4543962
    Abstract: A pressure cuff on the patient is inflated to a predetermined pressure above systolic, and then is deflated incrementally. At each decrement, oscillatory complexes are detected, and respective peaks are compared and evaluated as "true" complexes if they are within certain size matching criteria. After such "true" complexes are identified at a predetermined number of levels (e.g. 2 or 3), only a single complex is investigated at subsequent levels, provided specified size and timing criteria are met.
    Type: Grant
    Filed: July 9, 1984
    Date of Patent: October 1, 1985
    Assignee: Critikon, Inc.
    Inventors: Richard Medero, Rush W. Hood, Howard P. Apple, Maynard Ramsey, III
  • Patent number: 4409986
    Abstract: An esophageal cardiac pulse probe includes a lumen for insertion into the esophagus, the end of the lumen preferably being closed by a flexible diaphragm. Pressure variations imparted to the fluid within the lumen in response to sounds from the heart and the lungs are transmitted to an electrical transducer which produces an electrical signal proportional to the time-varying frequency and intensity of the pressure variations. This signal is selectively filtered to effectively eliminate signal components due to respiratory noise and audible heart sounds and the resulting signal is fed to an appropriate visual display apparatus. Direct acoustic cardiac sound monitoring is also achievable with an earpiece connected to the lumen. Several probe geometries and a method of cardiac pulse waveform monitoring are also disclosed.
    Type: Grant
    Filed: March 25, 1982
    Date of Patent: October 18, 1983
    Assignee: University Patents, Inc.
    Inventors: Howard P. Apple, Paul J. Dauchot
  • Patent number: 4331156
    Abstract: An esophageal cardiac pulse probe includes a lumen for insertion into the esophagus, the end of the lumen preferably being closed by a flexible diaphragm. Pressure variations imparted to the fluid within the lumen in response to sounds from the heart and the lungs are transmitted to an electrical transducer which produces an electrical signal proportional to the time-varying frequency and intensity of the pressure variations. This signal is selectively filtered to effectively eliminate signal components due to respiratory noise and audible heart sounds and the resulting signal is fed to an appropriate visual display apparatus. Direct acoustic cardiac sound monitoring is also achievable with an earpiece connected to the lumen. Several probe geometries and a method of cardiac pulse waveform monitoring are also disclosed.
    Type: Grant
    Filed: March 28, 1980
    Date of Patent: May 25, 1982
    Assignee: University Patents, Inc.
    Inventors: Howard P. Apple, Paul J. Dauchot