Patents by Inventor Howell G. Henry

Howell G. Henry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9711616
    Abstract: A dual-channel field effect transistor (FET) device having increased amplifier linearity and a method of manufacturing same are disclosed. In an embodiment, the device includes a channel layer having a top surface and provided within a channel between a source electrode and a drain electrode. A barrier layer is formed on the channel layer in alternating first and second barrier thicknesses along the channel. The first barrier thicknesses form thinner regions and the second barrier thicknesses form thicker regions. A gate electrode is deposited on the barrier layer. The thinner regions have a first pinch-off voltage and the thicker regions have a larger second pinch-off voltage, such that the thinner and thicker regions are configured to turn on at different points on a drain current-gate voltage transfer curve. Transfer curve linearity is increased as a function of the gate voltage.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: July 18, 2017
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Eric J. Stewart, Bettina A. Nechay, Karen M. Renaldo, Howell G. Henry, Ronald G. Freitag
  • Publication number: 20160181364
    Abstract: A dual-channel field effect transistor (FET) device having increased amplifier linearity and a method of manufacturing same are disclosed. In an embodiment, the device includes a channel layer having a top surface and provided within a channel between a source electrode and a drain electrode. A barrier layer is formed on the channel layer in alternating first and second barrier thicknesses along the channel. The first barrier thicknesses form thinner regions and the second barrier thicknesses form thicker regions. A gate electrode is deposited on the barrier layer. The thinner regions have a first pinch-off voltage and the thicker regions have a larger second pinch-off voltage, such that the thinner and thicker regions are configured to turn on at different points on a drain current-gate voltage transfer curve. Transfer curve linearity is increased as a function of the gate voltage.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Eric J. Stewart, Bettina A. Nechay, Karen M. Renaldo, Howell G. Henry, Ronald G. Freitag
  • Patent number: 5351163
    Abstract: A high Q monolithic metal-insulator-metal (MIM) capacitor utilizing a single crystal dielectric material. A dielectric membrane is epitaxially grown on a substrate. The membrane acts as an etch-stop when a backside etch is used to form a cavity in the substrate, resulting in a single crystal dielectric membrane spanning the cavity. Electrodes are formed on opposite surfaces of the membrane at the cavity location. For a shunt capacitor application, the bottom electrode is connected to the backside substrate metallization. For a series capacitor application, the bottom electrode is isolated from the backside metallization, but is connected to the topside circuitry through a via formed in the membrane. The membrane may consist of two dielectric layers, where the first layer is an etchstop material. In one embodiment the substrate and second dielectric layer are gallium arsenide and the first dielectric layer is aluminum gallium arsenide.
    Type: Grant
    Filed: December 30, 1992
    Date of Patent: September 27, 1994
    Assignee: Westinghouse Electric Corporation
    Inventors: Dale E. Dawson, Albert A. Burk, Jr., Harlan C. Cramer, Ronald C. Brooks, Howell G. Henry
  • Patent number: 5325129
    Abstract: The present invention provides a monolithic superheterodyne detector pixel operable to receive a radio frequency (RF) signal at millimeter wavelength and produce a video output signal with many orders of improved sensitivity when compared with the prior art. This sensitivity improvement is achieved by translating the received RF signal to a intermediate frequency (IF) signal before detection of the video signal. At the lower frequency of the IF signal, monolithic amplification circuitry can be fabricated more easily to provide necessary gain than would be achievable if simple amplification of the RF signal were attempted. Detector pixels constructed in accordance with the invention each contain an antenna for receiving the RF signal. Local oscillator (LO) signal circuitry likewise apply an externally generated LO signal to the pixel. The RF signal and LO signal are then applied by interconnecting conductors to appropriate mixer means to produce the IF signal.
    Type: Grant
    Filed: June 7, 1993
    Date of Patent: June 28, 1994
    Assignee: Westinghouse Electric Corporation
    Inventors: Howell G. Henry, Russell R. Shaller, Ronald G. Freitag, Marvin Cohn, David A. Blackwell, James E. Degenford