Patents by Inventor Howie Q. Tran

Howie Q. Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11083992
    Abstract: A process is provided of making facilitated transport membrane comprising a relatively hydrophilic, very small pore, nanoporous support membrane, a hydrophilic polymer inside the very small nanopores on the skin layer surface of the support membrane, a thin, nonporous, hydrophilic polymer layer coated on the surface of the support membrane, and metal salts incorporated in the hydrophilic polymer layer coated on the surface of the support membrane and the hydrophilic polymer inside the very small nanopores. In addition, the process provides a new method of making facilitated transport membrane spiral wound elements or hollow fiber modules for olefin/paraffin separations, particularly for C3=/C3 and C2=/C2 separations.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 10, 2021
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Carl W. Liskey
  • Patent number: 10751670
    Abstract: This invention provides a new high selectivity stable facilitated transport membrane comprising a polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane, a hydrophilic polymer inside the pores on the skin layer surface of the PES/PEO-Si blend support membrane; a hydrophilic polymer coated on the skin layer surface of the PES/PEO-Si blend support membrane, and metal salts incorporated in the hydrophilic polymer coating layer and the skin layer surface pores of the PES/PEO-Si blend support membrane, and methods of making such membranes. This invention also provides a method of using the high selectivity stable facilitated transport membrane comprising PES/PEO-Si blend support membrane for olefin/paraffin separations such as propylene/propane and ethylene/ethane separations.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: August 25, 2020
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Dung Le
  • Patent number: 10654004
    Abstract: This invention provides a new high flux reverse osmosis (RO) membrane comprising a nanoporous polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane (PES/PEO-Si) comprising a polyethylene oxide-polysilsesquioxane (PEO-Si) polymer and a polyethersulfone (PES) polymer, a hydrophilic polymer inside the pores on the skin layer surface of the polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a thin, nanometer layer of cross-linked polyamide on the skin layer surface of said polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a method of making such a membrane. This invention also provides a method of using the new high flux reverse osmosis membrane comprising nanoporous PES/PEO-Si blend support membrane for water purification.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 19, 2020
    Inventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Dung Le
  • Publication number: 20200101416
    Abstract: A process is provided of making facilitated transport membrane comprising a relatively hydrophilic, very small pore, nanoporous support membrane, a hydrophilic polymer inside the very small nanopores on the skin layer surface of the support membrane, a thin, nonporous, hydrophilic polymer layer coated on the surface of the support membrane, and metal salts incorporated in the hydrophilic polymer layer coated on the surface of the support membrane and the hydrophilic polymer inside the very small nanopores. In addition, the process provides a new method of making facilitated transport membrane spiral wound elements or hollow fiber modules for olefin/paraffin separations, particularly for C3=/C3 and C2=/C2 separations.
    Type: Application
    Filed: April 10, 2019
    Publication date: April 2, 2020
    Inventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Carl W. Liskey
  • Patent number: 10471381
    Abstract: This invention provides a new facilitated transport membrane comprising a relatively hydrophilic, very small pore, nanoporous support membrane, a hydrophilic polymer inside the very small nanopores on the skin layer surface of the support membrane, a thin, nonporous, hydrophilic polymer layer coated on the surface of the support membrane, and metal salts incorporated in the hydrophilic polymer layer coated on the surface of the support membrane and the hydrophilic polymer inside the very small nanopores, a method of making this membrane, and the use of this membrane for olefin/paraffin separations, particularly for C3=/C3 and C2=/C2 separations.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 12, 2019
    Inventors: Chunqing Liu, Carl W. Liskey, Howie Q. Tran, Nicole K. Karns
  • Patent number: 10427110
    Abstract: This invention discloses a membrane composition, a method of making, and applications for a new type of high selectivity, high plasticization-resistant and solvent-resistant, both chemically and UV cross-linked polyimide membranes. Gas permeation tests on these membranes demonstrated that they not only showed high selectivities, but also showed extremely high CO2 plasticization resistance under CO2 pressure up to 4923 kPa (700 psig). This new type of high selectivity, high plasticization-resistant and solvent-resistant, both chemically and UV cross-linked polyimide membranes can be used for a wide range of gas separations such as separations of H2/CH4, He/CH4, CO2/CH4, CO2/N2, olefin/paraffin separations (e.g. propylene/propane separation), O2/N2, iso/normal paraffins, polar molecules such as H2O, H2S, and NH3 mixtures with CH4, N2, H2, and other light gases separations. The membranes can also be used for liquid separations such as in the removal of organic compounds from water.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 1, 2019
    Inventors: Chunqing Liu, Howie Q. Tran
  • Publication number: 20190060841
    Abstract: This invention provides a new high selectivity stable facilitated transport membrane comprising a polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane, a hydrophilic polymer inside the pores on the skin layer surface of the PES/PEO-Si blend support membrane; a hydrophilic polymer coated on the skin layer surface of the PES/PEO-Si blend support membrane, and metal salts incorporated in the hydrophilic polymer coating layer and the skin layer surface pores of the PES/PEO-Si blend support membrane, and methods of making such membranes. This invention also provides a method of using the high selectivity stable facilitated transport membrane comprising PES/PEO-Si blend support membrane for olefin/paraffin separations such as propylene/propane and ethylene/ethane separations.
    Type: Application
    Filed: July 19, 2018
    Publication date: February 28, 2019
    Inventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Dung Le
  • Publication number: 20190060844
    Abstract: This invention provides a new high flux reverse osmosis (RO) membrane comprising a nanoporous polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane (PES/PEO-Si) comprising a polyethylene oxide-polysilsesquioxane (PEO-Si) polymer and a polyethersulfone (PES) polymer, a hydrophilic polymer inside the pores on the skin layer surface of the polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a thin, nanometer layer of cross-linked polyamide on the skin layer surface of said polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a method of making such a membrane. This invention also provides a method of using the new high flux reverse osmosis membrane comprising nanoporous PES/PEO-Si blend support membrane for water purification.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 28, 2019
    Inventors: Chunqing Liu, Nicole K. Karns, Howie Q. Tran, Dung Le
  • Publication number: 20180050310
    Abstract: This invention discloses a membrane composition, a method of making, and applications for a new type of high selectivity, high plasticization-resistant and solvent-resistant, both chemically and UV cross-linked polyimide membranes. Gas permeation tests on these membranes demonstrated that they not only showed high selectivities, but also showed extremely high CO2 plasticization resistance under CO2 pressure up to 4923 kPa (700 psig). This new type of high selectivity, high plasticization-resistant and solvent-resistant, both chemically and UV cross-linked polyimide membranes can be used for a wide range of gas separations such as separations of H2/CH4, He/CH4, CO2/CH4, CO2/N2, olefin/paraffin separations (e.g. propylene/propane separation), O2/N2, iso/normal paraffins, polar molecules such as H2O, H2S, and NH3 mixtures with CH4, N2, H2, and other light gases separations. The membranes can also be used for liquid separations such as in the removal of organic compounds from water.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 22, 2018
    Inventors: Chunqing Liu, Howie Q. Tran
  • Publication number: 20170354918
    Abstract: This invention provides a new facilitated transport membrane comprising a relatively hydrophilic, very small pore, nanoporous support membrane, a hydrophilic polymer inside the very small nanopores on the skin layer surface of the support membrane, a thin, nonporous, hydrophilic polymer layer coated on the surface of the support membrane, and metal salts incorporated in the hydrophilic polymer layer coated on the surface of the support membrane and the hydrophilic polymer inside the very small nanopores, a method of making this membrane, and the use of this membrane for olefin/paraffin separations, particularly for C3=/C3 and C2=/C2 separations.
    Type: Application
    Filed: May 17, 2017
    Publication date: December 14, 2017
    Inventors: Chunqing Liu, Carl W. Liskey, Howie Q. Tran, Nicole K. Karns
  • Patent number: 9751053
    Abstract: An asymmetric integrally-skinned flat sheet membrane comprising a miscible blend of an aromatic polyethersulfone (PES) polymer and an aromatic polyimide polymer is used for gas separations such as hydrogen purification, separation of hydrogen and methane and to separate other gases and liquids. UV radiation may be applied to the surface of the membrane for improved properties.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: September 5, 2017
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Howie Q. Tran
  • Patent number: 9669363
    Abstract: The present invention provides high permeance copolyimide membranes and methods for making and using these membranes for gas separations such as for hydrogen purification and for acid gas removal from natural gas. The random copolyimide polymers used to make the copolyimide membrane may be UV crosslinked to improve selectivity in separating mixtures of gases or in purifying liquids. The membranes may be fabricated into any known membrane configuration such as a flat sheet or a hollow fiber.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: June 6, 2017
    Assignee: UOP LLC
    Inventors: Sudipto Chakraborty, Chunqing Liu, Howie Q. Tran
  • Patent number: 9637586
    Abstract: The present invention provided a high temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications such as for natural gas upgrading and hydrogen purifications. This invention also relates to a hollow fiber membrane module comprising a bundle of multiple high performance hollow fiber membranes and a tube sheet formed by a high temperature resistant cured epoxy resin that is used to fix and bound said bundle of multiple high performance hollow fiber membranes. The invention also provides a process for separating at least one gas from a mixture of gases using the hollow fiber membrane modules comprising a bundle of multiple high performance hollow fiber membranes and a tube sheet formed by a high temperature resistant cured epoxy resin that is used to fix and bound said bundle of multiple high performance hollow fiber membranes.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: May 2, 2017
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Howie Q. Tran, Travis C. Bowen
  • Patent number: 9480954
    Abstract: The present invention provides a high selectivity epoxysilicone-cross-linked polyimide membrane comprising a polyimide polymer with hydroxyl functional groups cross-linked with epoxy functional groups on epoxysilicone polymer. The present invention also provides a process for separating at least one gas from a mixture of gases using the high selectivity epoxysilicone-cross-linked polyimide membrane. The process comprises providing the high selectivity epoxysilicone-cross-linked polyimide membrane which is permeable to the at least one gas; contacting the mixture on one side of the membrane to cause the at least one gas to permeate the membrane; and removing from the opposite side of the membrane a permeate gas composition comprising a portion of the at least one gas which permeated the high selectivity epoxysilicone-cross-linked polyimide membrane.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: November 1, 2016
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Howie Q. Tran
  • Publication number: 20160303521
    Abstract: The present invention provides high permeance copolyimide membranes and methods for making and using these membranes for gas separations such as for hydrogen purification and for acid gas removal from natural gas. The random copolyimide polymers used to make the copolyimide membrane may be UV crosslinked to improve selectivity in separating mixtures of gases or in purifying liquids. The membranes may be fabricated into any known membrane configuration such as a flat sheet or a hollow fiber.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: Sudipto Chakraborty, Chunqing Liu, Howie Q. Tran
  • Publication number: 20160271571
    Abstract: The present invention provides a high selectivity epoxysilicone-cross-linked polyimide membrane comprising a polyimide polymer with hydroxyl functional groups cross-linked with epoxy functional groups on epoxysilicone polymer. The present invention also provides a process for separating at least one gas from a mixture of gases using the high selectivity epoxysilicone-cross-linked polyimide membrane. The process comprises providing the high selectivity epoxysilicone-cross-linked polyimide membrane which is permeable to the at least one gas; contacting the mixture on one side of the membrane to cause the at least one gas to permeate the membrane; and removing from the opposite side of the membrane a permeate gas composition comprising a portion of the at least one gas which permeated the high selectivity epoxysilicone-cross-linked polyimide membrane.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 22, 2016
    Inventors: Chunqing Liu, Howie Q. Tran
  • Publication number: 20160236151
    Abstract: The present invention provided a high temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications such as for natural gas upgrading and hydrogen purifications. This invention also relates to a hollow fiber membrane module comprising a bundle of multiple high performance hollow fiber membranes and a tube sheet formed by a high temperature resistant cured epoxy resin that is used to fix and bound said bundle of multiple high performance hollow fiber membranes. The invention also provides a process for separating at least one gas from a mixture of gases using the hollow fiber membrane modules comprising a bundle of multiple high performance hollow fiber membranes and a tube sheet formed by a high temperature resistant cured epoxy resin that is used to fix and bound said bundle of multiple high performance hollow fiber membranes.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: Chunqing Liu, Howie Q. Tran, Travis C. Bowen
  • Patent number: 9327248
    Abstract: A copolyimide polymer membrane is provided for separation of hydrocarbons including separation of olefins from paraffins and isoparaffins from other paraffins. The copolyimide polymer membranes include a poly(3,3?-diaminobenzophenone-3,3?,5,5?-tetramethyl-4,4?-methylene dianiline-pyromellitic dianhydride) (abbreviated as poly(DAB-TMMDA-PMDA)). The copolyimide membranes prepared from poly(DAB-TMMDA-PMDA) with varying molar ratios of DAB to TMMDA (abbreviated as PI-DAB-T) showed excellent separation properties for propylene/propane separation.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: May 3, 2016
    Assignee: UOP LLC
    Inventors: Carl W. Liskey, Chunqing Liu, Howie Q. Tran, Nicole K. Karns
  • Patent number: 9308499
    Abstract: The polyimide blend membrane in the present invention was prepared by blending a first aromatic polyimide with high permeability and a second aromatic polyimide with high selectivity for gas separation. The polyimide blend membrane in the present invention showed improved permeability compared to membranes made from the second aromatic polyimide and improved selectivity compared to membranes made from the first aromatic polyimide.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: April 12, 2016
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Howie Q. Tran
  • Patent number: 9308487
    Abstract: The polyimide blend membrane in the present invention was prepared by blending a first aromatic polyimide with high permeability and a second aromatic polyimide with high selectivity for gas separation. The polyimide blend membrane in the present invention showed improved permeability compared to membranes made from the second aromatic polyimide and improved selectivity compared to membranes made from the first aromatic polyimide.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: April 12, 2016
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Howie Q. Tran