Patents by Inventor Hoyun Won

Hoyun Won has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11637374
    Abstract: In an aspect, the disclosed technology relates to embodiments of a lossy ferrite-core and dielectric-shell (LFC-DS) structure in an axial-mode helical antenna (AM-HA) or a meandered dipole antennas. The instant topology can be used to facilitates the broader use of ferrite materials, including lossy ferrite material, for a miniature AM-HA or meandered dipole antennas, e.g., by overcoming the lossy characteristics of the lossy ferrite. The resulting miniature AM-HA can be used for high frequency operation, including at over 1 GHz, making the instant topology suitable for very high frequency (VHF) and ultra-high Frequency (UHF) applications.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 25, 2023
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: Yang-Ki Hong, Woncheol Lee, Hoyun Won
  • Publication number: 20220393529
    Abstract: Various implementations include a six-phase electric motor including an annular stator and a rotor. The stator defines an opening having an inner surface. First and second three-phase sets of concentrated windings are circumferentially spaced along the inner surface of the opening. The first and second sets of concentrated windings are circumferentially offset from each other. The stator defines voids located radially outwardly from, and circumferentially between, each of the windings. The rotor includes permanent magnets circumferentially spaced around the rotor axis. The outer circumferential surface of the rotor defines grooves located circumferentially between each of the permanent magnets. The rotor is disposed within the stator opening such that the stator and rotor are coincident with each other. Flux from the permanent magnets interacts with a stator magnetic field created by a current flowing through the first and second sets of concentrated windings to cause the rotor to rotate.
    Type: Application
    Filed: May 18, 2022
    Publication date: December 8, 2022
    Inventors: Yang-Ki Hong, Hoyun Won, Jonathan Platt
  • Patent number: 11171526
    Abstract: Various implementations include an electric motor including an annular radial stator, an annular axial stator, and a rotor. The annular radial stator has an opening with an inner surface and distributed windings disposed along at least the inner surface of the opening. The annular axial stator has concentrated windings disposed along at least a first side of the axial stator. The rotor includes two or more magnets. Flux from the two or more magnets interacts with one or both of a magnetic field created by the radial stator windings or axial rotor windings. The rotor is disposed within the radial stator opening and the axes of the axial stator and radial stator are coincident with the rotor axis. The flux interacting with one or both of the radial stator magnetic field or the axial stator magnetic field turns the rotor about the rotor axis.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: November 9, 2021
    Assignee: The Board of Trustees of the University of Alabama
    Inventors: Yang-Ki Hong, Hoyun Won, Woncheol Lee
  • Patent number: 11024971
    Abstract: Described and disclosed herein is a wideband polarized patch antenna and the antenna array that can cover mmWave frequency band from 24.3 to 29.6 GHz for 5G applications, and a feeding structure for such an antenna comprising a single element of a polarized helical-shaped L-probe fed patch antenna (HLF-PA) package.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 1, 2021
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: Yang-Ki Hong, Woncheol Lee, Hoyun Won
  • Patent number: 10944303
    Abstract: Various implementations include a spoke-type rotor design that exhibits low torque ripple with competitive torque density. The rotor includes a rotor core, rotor core (RC) magnets, nonmagnetic caps disposed on an outer radial end of each RC magnet, and flux directing (FD) magnets disposed circumferentially between adjacent RC magnets. Each nonmagnetic cap has a radially tapered shape (e.g., trapezoidal). An outer radial end of each cap and an outer radial end of each RC magnet opening define an air gap therebetween. The magnetic flux directions of the RC magnets are circumferentially directed clockwise or counterclockwise, and the flux directions of circumferentially adjacent RC magnets are opposite from each other. The magnetic flux directions of the FD magnets are directed radially inwardly or outwardly, and the flux directions of circumferentially adjacent FD magnets are opposite from each other. The RC and/or FD magnets may include rare-earth free materials.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: March 9, 2021
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: Yang-Ki Hong, Hoyun Won, Woncheol Lee
  • Publication number: 20210011108
    Abstract: A direction-finding system is disclosed. The receiving system includes a channel sounder using a Pseudo-Doppler Antenna Array (PDAA) configured to locate transmitters and to sound the channel at pre-defined operating frequency.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 14, 2021
    Inventors: Yang-Ki Hong, Hoyun Won, Katelyn Rose Isbell, Leo Xavier Vanderburgh, Jonathan Thomas Platt, Woncheol Lee
  • Publication number: 20200365991
    Abstract: In an aspect, the disclosed technology relates to embodiments of a lossy ferrite-core and dielectric-shell (LFC-DS) structure in an axial-mode helical antenna (AM-HA) or a meandered dipole antennas. The instant topology can be used to facilitates the broader use of ferrite materials, including lossy ferrite material, for a miniature AM-HA or meandered dipole antennas, e.g., by overcoming the lossy characteristics of the lossy ferrite. The resulting miniature AM-HA can be used for high frequency operation, including at over 1 GHz, making the instant topology suitable for very high frequency (VHF) and ultra-high Frequency (UHF) applications.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Inventors: Yang-Ki Hong, Woncheol Lee, Hoyun Won
  • Publication number: 20200112211
    Abstract: Various implementations include an electric motor including an annular radial stator, an annular axial stator, and a rotor. The annular radial stator has an opening with an inner surface and distributed windings disposed along at least the inner surface of the opening. The annular axial stator has concentrated windings disposed along at least a first side of the axial stator. The rotor includes two or more magnets. Flux from the two or more magnets interacts with one or both of a magnetic field created by the radial stator windings or axial rotor windings. The rotor is disposed within the radial stator opening and the axes of the axial stator and radial stator are coincident with the rotor axis. The flux interacting with one or both of the radial stator magnetic field or the axial stator magnetic field turns the rotor about the rotor axis.
    Type: Application
    Filed: September 24, 2019
    Publication date: April 9, 2020
    Inventors: Yang-Ki Hong, Hoyun Won, Woncheol Lee
  • Publication number: 20200052403
    Abstract: Described and disclosed herein is a wideband polarized patch antenna and the antenna array that can cover mmWave frequency band from 24.3 to 29.6 GHz for 5G applications, and a feeding structure for such an antenna comprising a single element of a polarized helical-shaped L-probe fed patch antenna (HLF-PA) package.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 13, 2020
    Inventors: Yang-Ki Hong, Woncheol Lee, Hoyun Won
  • Patent number: 10367437
    Abstract: Described herein is an approximate dynamic programming (ADP) vector controller for control of a permanent magnet (PM) motor. The ADP controller is developed using the full dynamic equation of a PM motor and implemented using an artificial neural network (ANN). A feedforward control strategy is integrated with the ANN-based ADP controller to enhance the stability and transient performance of the ADP controller in both linear and over modulation regions. Simulation and hardware experiments demonstrate that the proposed ANN-based ADP controller can track large reference changes with high efficiency and reliability for PM motor operation in linear and over modulation regions.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: July 30, 2019
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: Shuhui Li, Xingang Fu, Hoyun Won, Yang Sun
  • Publication number: 20190027981
    Abstract: Various implementations include a spoke-type rotor design that exhibits low torque ripple with competitive torque density. The rotor includes a rotor core, rotor core (RC) magnets, nonmagnetic caps disposed on an outer radial end of each RC magnet, and flux directing (FD) magnets disposed circumferentially between adjacent RC magnets. Each nonmagnetic cap has a radially tapered shape (e.g., trapezoidal). An outer radial end of each cap and an outer radial end of each RC magnet opening define an air gap therebetween. The magnetic flux directions of the RC magnets are circumferentially directed clockwise or counterclockwise, and the flux directions of circumferentially adjacent RC magnets are opposite from each other. The magnetic flux directions of the FD magnets are directed radially inwardly or outwardly, and the flux directions of circumferentially adjacent FD magnets are opposite from each other. The RC and/or FD magnets may include rare-earth free materials.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 24, 2019
    Inventors: Yang-Ki Hong, Hoyun Won, Woncheol Lee
  • Publication number: 20180212541
    Abstract: Described herein is an approximate dynamic programming (ADP) vector controller for control of a permanent magnet (PM) motor. The ADP controller is developed using the full dynamic equation of a PM motor and implemented using an artificial neural network (ANN). A feedforward control strategy is integrated with the ANN-based ADP controller to enhance the stability and transient performance of the ADP controller in both linear and over modulation regions. Simulation and hardware experiments demonstrate that the proposed ANN-based ADP controller can track large reference changes with high efficiency and reliability for PM motor operation in linear and over modulation regions.
    Type: Application
    Filed: January 25, 2018
    Publication date: July 26, 2018
    Inventors: Shuhui Li, Xingang Fu, Hoyun Won, Yang Sun