Patents by Inventor Hsi-Jen Pan

Hsi-Jen Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6800499
    Abstract: A high-sensitivity Pd/InP hydrogen sensor was made by a) forming an n-type or p-type semiconductor film on a semiconductor substrate; b) forming a patterned first metal electrode on the semiconductor film, wherein the first metal electrode forms an Ohmic contact with the semiconductor film; and c) forming a second metal electrode on the semiconductor film, the second metal electrode being isolated from the first metal electrode, wherein the second metal electrode forms a Schottky contact with the semiconductor film, wherein a thickness of the second metal electrode and a material of which the second metal electrode is made enable a Schottky barrier height of the Schottky contact to decrease when hydrogen contacts the second metal electrode. The second metal electrode can be physical vapor deposited or electroless plated.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: October 5, 2004
    Assignee: National Science Council
    Inventors: Huey-Ing Chen, Wen-Chau Liu, Yen-I Chou, Chin-Yi Chu, Hsi-Jen Pan
  • Publication number: 20020182767
    Abstract: A high-sensitivity Pd/InP hydrogen sensor was made by a) forming an n-type or p-type semiconductor film on a semiconductor substrate; b) forming a patterned first metal electrode on said semiconductor film, wherein said first metal electrode forms an Ohmic contact with said semiconductor film; and c) forming a second metal electrode on said semiconductor film, said second metal electrode being isolated from said first metal electrode, wherein said second metal electrode forms a Schottky contact with said semiconductor film, wherein a thickness of said second metal electrode and a material of which said second metal electrode is made enable a Schottky barrier height of said Schottky contact to decrease when hydrogen contacts said second metal electrode. The second metal electrode can be physical vapor deposited or electroless plated.
    Type: Application
    Filed: May 28, 2002
    Publication date: December 5, 2002
    Applicant: National Science Council, a Taiwan corporation
    Inventors: Huey-Ing Chen, Wen-Chau Liu, Yen-I Chou, Chin-Yi Chu, Hsi-Jen Pan
  • Publication number: 20010049184
    Abstract: A high-sensitivity Pd/InP hydrogen sensor was made by a) forming an n-type or p-type semiconductor film on a semiconductor substrate; b) forming a patterned first metal electrode on said semiconductor film, wherein said first metal electrode forms an Ohmic contact with said semiconductor film; and c) forming a second metal electrode on said semiconductor film, said second metal electrode being isolated from said first metal electrode, wherein said second metal electrode forms a Schottky contact with said semiconductor film, wherein a thickness of said second metal electrode and a material of which said second metal electrode is made enable a Schottky barrier height of said Schottky contact to decrease when hydrogen contacts said second metal electrode. The second metal electrode can be physical vapor deposited or electroless plated.
    Type: Application
    Filed: December 5, 2000
    Publication date: December 6, 2001
    Inventors: Huey-Ing Chen, Wen-Chau Liu, Yen-I Chou, Chin-Yi Chu, Hsi-Jen Pan
  • Patent number: 6293137
    Abstract: In this invention, we propose a high-sensitivity Pd/InP hydrogen sensor. First, a n-type InP semiconductor membrane is grown on a semi-insulating InP substrate. The concentration and thickness of this membrane are 2×1017cm−3 and 3000 Å, respectively. Then, Pd metal and AuGe alloy are evaporated on the surface of the membrane as the anode and cathode electrodes, respectively. Due to the catalytic performance of Pd metal, the adsorbed hydrogen molecules on the surface of the Pd metal are dissociated into hydrogen atoms. The hydrogen atoms diffuse and pass through the Pd metal and form a dipole layer at the interface between the Pd metal and the n-type InP membrane. This dipole layer will decrease the depletion width of the n-type InP membrane and further lower the metal-semiconductor Schottky barrier height. Therefore, the current-voltage (I-V) characteristics will be modulated after the introduction of hydrogen gas.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: September 25, 2001
    Assignee: National Science Council
    Inventors: Wen-Chau Liu, Huey-lng Chen, Hsi-Jen Pan