Patents by Inventor Hsiang-Chieh HSU

Hsiang-Chieh HSU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11900816
    Abstract: A vehicle platoon following deciding system based on cloud computing is configured to decide a plurality of vehicle platoon accelerations of a leading vehicle and at least one following vehicle. A cloud processing unit receives a leading vehicle parameter group and at least one following vehicle parameter group. The cloud processing unit is configured to implement a cloud deciding step. The cloud deciding step includes judging whether the leading vehicle is manually driven according to the leading vehicle parameter group to generate a driving mode judging result, calculating a driving acceleration range according to a leading vehicle acceleration range and at least one following vehicle acceleration range, estimating a compensated acceleration according to the leading vehicle parameter group, and calculating the vehicle platoon accelerations according to the driving mode judging result and at least one of the driving acceleration range and the compensated acceleration.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: February 13, 2024
    Assignee: Automotive Research & Testing Center
    Inventors: Hsiang Chieh Hsu, Tsung-Ming Hsu
  • Publication number: 20230169870
    Abstract: A vehicle platoon following deciding system based on cloud computing is configured to decide a plurality of vehicle platoon accelerations of a leading vehicle and at least one following vehicle. A cloud processing unit receives a leading vehicle parameter group and at least one following vehicle parameter group. The cloud processing unit is configured to implement a cloud deciding step. The cloud deciding step includes judging whether the leading vehicle is manually driven according to the leading vehicle parameter group to generate a driving mode judging result, calculating a driving acceleration range according to a leading vehicle acceleration range and at least one following vehicle acceleration range, estimating a compensated acceleration according to the leading vehicle parameter group, and calculating the vehicle platoon accelerations according to the driving mode judging result and at least one of the driving acceleration range and the compensated acceleration.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Inventors: Hsiang Chieh HSU, Tsung-Ming HSU
  • Patent number: 11572082
    Abstract: A driving risk assessment and control decision-making method for an autonomous vehicle includes: detecting the surrounding state of the vehicle multiple times to generate multiple sensing signals; quantifying the sensing signals to generate multiple sensing values and calculating a sensing average value of the sensing values; calculating a sensing error value between each sensing value and the sensing average value, a sensing error average value of sensing error values and a sensing error variation value; integrating the sensing error average value, the sensing error variation value and a sensor systematic error average value and a sensor systematic error variation value to generate a sensing signal correction value; combining the sensing values and the sensing signal correction value to generate multiple sensing signal reference values; judging whether a stability of the sensing signal reference values falls within a preset range; generating a control mechanism based on the judgement.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: February 7, 2023
    Assignee: AUTOMOTIVE RESEARCH & TESTING CENTER
    Inventors: Cheng-Hsien Wang, Tsung-Ming Hsu, Hsiang-Chieh Hsu
  • Publication number: 20220126869
    Abstract: A driving risk assessment and control decision-making method for an autonomous vehicle includes: detecting the surrounding state of the vehicle multiple times to generate multiple sensing signals; quantifying the sensing signals to generate multiple sensing values and calculating a sensing average value of the sensing values; calculating a sensing error value between each sensing value and the sensing average value, a sensing error average value of sensing error values and a sensing error variation value; integrating the sensing error average value, the sensing error variation value and a sensor systematic error average value and a sensor systematic error variation value to generate a sensing signal correction value; combining the sensing values and the sensing signal correction value to generate multiple sensing signal reference values; judging whether a stability of the sensing signal reference values falls within a preset range; generating a control mechanism based on the judgement.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Cheng-Hsien WANG, Tsung-Ming HSU, Hsiang-Chieh HSU