Patents by Inventor Hsiang Hsiang Ko

Hsiang Hsiang Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9735271
    Abstract: A semiconductor device includes an isolation feature in a substrate. The semiconductor device further includes a first source/drain feature in the substrate, wherein a first side of the first source/drain feature contacts the isolation feature, and the first source/drain feature exposes a portion of the isolation feature below a top surface of the substrate. The semiconductor device further includes a silicide layer over the first source/drain feature. The semiconductor device further includes a dielectric layer along the exposed portion of the isolation feature below the top surface of the substrate, wherein the dielectric layer contacts the silicide layer. The semiconductor device further includes a second source/drain feature in the substrate on an opposite side of a gate stack from the first source/drain feature, wherein the second source/drain feature has a substantially uniform thickness.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: August 15, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen Chu Hsiao, Lai Wan Chong, Chun-Chieh Wang, Ying Min Chou, Hsiang Hsiang Ko, Ying-Lang Wang
  • Patent number: 9698263
    Abstract: A semiconductor structure that includes crystalline surfaces and amorphous hydrophilic surfaces is provided. The hydrophilic surfaces are treated with silane that includes a hydrophobic functional group, converting the hydrophilic surfaces to hydrophobic surfaces. Chemical vapor deposition or other suitable deposition methods are used to simultaneously deposit a material on both surfaces and due to the surface treatment, the deposited material exhibits superior adherence qualities on both surfaces. In one embodiment, the structure is an opening formed in a semiconductor substrate and bounded by at least one portion of a crystalline silicon surface and at least one portion of an amorphous silicon oxide structure.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: July 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lai-Wan Chong, Wen-Chu Hsiao, Ying-Min Chou, Hsiang-Hsiang Ko
  • Patent number: 9634119
    Abstract: A method includes providing a gate structure over a semiconductor substrate and forming a source/drain region associated with the gate structure by etching an opening in the semiconductor substrate, performing a first epitaxial growth process while an entirety of a sidewall of the opening is exposed to grow a first epitaxy material in the opening. The first epitaxial growth process is free of a first dopant impurity. A second epitaxial growth process is performed after first epitaxial growth process to grow a second epitaxy material on the first epitaxy material. The second epitaxy material has the first dopant impurity at a first concentration. Further, a third epitaxial growth process is performed after the second epitaxial growth process that includes introducing the first dopant impurity at a second concentration, the second concentration greater than the first concentration.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen Chu Hsiao, Ju Wen Hsiao, Ying Min Chou, Hsiang Hsiang Ko, Ying-Lang Wang
  • Patent number: 9607946
    Abstract: The present disclosure relates to a method of forming a back-end-of-the-line metallization layer. The method is performed by forming a plurality of freestanding metal layer structures (i.e., metal layer structures not surrounded by a dielectric material) on a semiconductor substrate within an area defined by a patterned photoresist layer. A diffusion barrier layer is deposited onto the metal layer structure in a manner such that the diffusion barrier layer conforms to the top and sides of the metal layer structure. A dielectric material is formed on the surface of the substrate to fill areas between metal layer structures. The substrate is planarized to remove excess metal and dielectric material and to expose the top of the metal layer structure.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: March 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Hua Chou, Min Hao Hong, Jian-Shin Tsai, Miao-Cheng Liao, Hsiang Hsiang Ko
  • Patent number: 9536834
    Abstract: The present disclosure relates to a method of forming a back-end-of-the-line metallization layer. The method is performed by forming a plurality of freestanding metal layer structures (i.e., metal layer structures not surrounded by a dielectric material) on a semiconductor substrate within an area defined by a patterned photoresist layer. A diffusion barrier layer is deposited onto the metal layer structure in a manner such that the diffusion barrier layer conforms to the top and sides of the metal layer structure. A dielectric material is formed on the surface of the substrate to fill areas between metal layer structures. The substrate is planarized to remove excess metal and dielectric material and to expose the top of the metal layer structure.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: January 3, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Hua Chou, Min Hao Hong, Jian-Shin Tsai, Miao-Cheng Liao, Hsiang Hsiang Ko
  • Patent number: 9502280
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang-Hsiang Ko, Chen-Ming Huang
  • Publication number: 20160190320
    Abstract: A semiconductor structure that includes crystalline surfaces and amorphous hydrophilic surfaces is provided. The hydrophilic surfaces are treated with silane that includes a hydrophobic functional group, converting the hydrophilic surfaces to hydrophobic surfaces. Chemical vapor deposition or other suitable deposition methods are used to simultaneously deposit a material on both surfaces and due to the surface treatment, the deposited material exhibits superior adherence qualities on both surfaces. In one embodiment, the structure is an opening formed in a semiconductor substrate and bounded by at least one portion of a crystalline silicon surface and at least one portion of an amorphous silicon oxide structure.
    Type: Application
    Filed: November 19, 2015
    Publication date: June 30, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lai-Wan CHONG, Wen-Chu HSIAO, Ying-Min CHOU, Hsiang-Hsiang KO
  • Patent number: 9379275
    Abstract: A method for reducing dark current in image sensors comprises providing a backside illuminated image sensor wafer, depositing a first passivation layer on a backside of the backside illuminated image sensor wafer, depositing a plasma enhanced passivation layer on the first passivation layer and depositing a second passivation layer on the plasma enhanced passivation layer.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 28, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Miao-Cheng Liao, Jinn-Kwei Liang, Wen-Chieh Hsieh, Shiu-Ko JangJian, Hsiang Hsiang Ko, Ying-Lang Wang
  • Publication number: 20160181427
    Abstract: A semiconductor device includes an isolation feature in a substrate. The semiconductor device further includes a first source/drain feature in the substrate, wherein a first side of the first source/drain feature contacts the isolation feature, and the first source/drain feature exposes a portion of the isolation feature below a top surface of the substrate. The semiconductor device further includes a silicide layer over the first source/drain feature. The semiconductor device further includes a dielectric layer along the exposed portion of the isolation feature below the top surface of the substrate, wherein the dielectric layer contacts the silicide layer. The semiconductor device further includes a second source/drain feature in the substrate on an opposite side of a gate stack from the first source/drain feature, wherein the second source/drain feature has a substantially uniform thickness.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 23, 2016
    Inventors: Wen Chu HSIAO, Lai Wan CHONG, Chun-Chieh WANG, Ying Min CHOU, Hsiang Hsiang KO, Ying-Lang WANG
  • Patent number: 9324863
    Abstract: A semiconductor device includes a source/drain feature in a substrate. The source/drain feature has an upper portion and a lower portion, the upper portion having a lower concentration of Ge than the lower portion. A Si-containing layer over the source/drain feature includes a metal silicide layer.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: April 26, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen Chu Hsiao, Lai Wan Chong, Chun-Chieh Wang, Ying Min Chou, Hsiang Hsiang Ko, Ying-Lang Wang
  • Patent number: 9263275
    Abstract: A metal oxide semiconductor field effect transistor (MOSFET) includes a semiconductor substrate and a interlayer dielectric (ILD) over the semiconductor substrate. A gate structure is formed within the ILD and disposed on the semiconductor substrate, wherein the gate structure includes a high-k dielectric material layer and a metal gate stack. One or more portions of a protection layer are formed over the gate stack, and a contact etch stop layer is formed over the ILD and over the one or more portions of the protection layer. The metal gate stack includes aluminum and the protection layer includes aluminum oxide.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jinn-Kwei Liang, Chung-Ren Sun, Shiu-Ko Jang Jiang, Hsiang-Hsiang Ko
  • Patent number: 9214393
    Abstract: A semiconductor structure that includes crystalline surfaces and amorphous hydrophilic surfaces is provided. The hydrophilic surfaces are treated with silane that includes a hydrophobic functional group, converting the hydrophilic surfaces to hydrophobic surfaces. Chemical vapor deposition or other suitable deposition methods are used to simultaneously deposit a material on both surfaces and due to the surface treatment, the deposited material exhibits superior adherence qualities on both surfaces. In one embodiment, the structure is an opening formed in a semiconductor substrate and bounded by at least one portion of a crystalline silicon surface and at least one portion of an amorphous silicon oxide structure.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lai Wan Chong, Wen Chu Hsiao, Ying Min Chou, Hsiang Hsiang Ko
  • Publication number: 20150311314
    Abstract: A method includes providing a gate structure over a semiconductor substrate and forming a source/drain region associated with the gate structure by etching an opening in the semiconductor substrate, performing a first epitaxial growth process while an entirety of a sidewall of the opening is exposed to grow a first epitaxy material in the opening. The first epitaxial growth process is free of a first dopant impurity. A second epitaxial growth process is performed after first epitaxial growth process to grow a second epitaxy material on the first epitaxy material. The second epitaxy material has the first dopant impurity at a first concentration. Further, a third epitaxial growth process is performed after the second epitaxial growth process that includes introducing the first dopant impurity at a second concentration, the second concentration greater than the first concentration.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 29, 2015
    Inventors: Wen Chu Hsiao, Ju Wen Hsiao, Ying Min Chou, Hsiang Hsiang Ko, Ying-Lang Wang
  • Patent number: 9105578
    Abstract: A metal oxide semiconductor field effect transistor (MOSFET) includes a semiconductor substrate and an interlayer dielectric (ILD) over the semiconductor substrate. A gate structure is formed within the ILD and disposed on the semiconductor substrate, wherein the gate structure includes a high-k dielectric material layer and a metal gate stack. One or more portions of a protection layer are formed over the gate stack, and a contact etch stop layer is formed over the ILD and over the one or more portions of the protection layer. The metal gate stack includes aluminum and the protection layer includes aluminum oxide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 11, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jinn-Kwei Liang, Chung-Ren Sun, Shiu-Ko Jang Jiang, Hsiang-Hsiang Ko
  • Publication number: 20150179502
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang Hsiang Ko, Chen-Ming Huang
  • Patent number: 9064892
    Abstract: A semiconductor structure and method for forming the same provide a high mobility stressor material suitable for use as source/drain regions or other active devices. The structure is formed in a substrate opening and is doped with an impurity such as boron in upper portions but is void of the impurity in regions that contact the surfaces of the opening. The structure is therefore resistant to out-diffusion of the dopant impurity during high temperature operations and may be formed through selective deposition using reduced pressure chemical vapor deposition or reduced pressure epitaxial deposition.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: June 23, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen Chu Hsiao, Ju Wen Hsiao, Ying Min Chou, Hsiang Hsiang Ko, Ying-Lang Wang
  • Patent number: 9006070
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang-Hsiang Ko, Chen-Ming Huang
  • Patent number: 8927406
    Abstract: A method for fabricating a dual damascene metal gate includes forming a dummy gate onto a substrate, disposing a protective layer on the substrate and the dummy gate, and growing an expanding layer on sides of the dummy gate. The method further includes removing the protective layer, forming a spacer around the dummy gate, and depositing and planarizing a dielectric layer. The method further includes selectively removing the expanding layer, and removing the dummy gate.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Wang, Wen-Chu Hsiao, Ying-Min Chou, Hsiang-Hsiang Ko
  • Publication number: 20140273385
    Abstract: A metal oxide semiconductor field effect transistor (MOSFET) includes a semiconductor substrate and an interlayer dielectric (ILD) over the semiconductor substrate. A gate structure is formed within the ILD and disposed on the semiconductor substrate, wherein the gate structure includes a high-k dielectric material layer and a metal gate stack. One or more portions of a protection layer are formed over the gate stack, and a contact etch stop layer is formed over the ILD and over the one or more portions of the protection layer. The metal gate stack includes aluminum and the protection layer includes aluminum oxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Jinn-Kwei Liang, Chung-Ren Sun, Shiu-Ko Jang Jiang, Hsiang-Hsiang Ko
  • Publication number: 20140239416
    Abstract: A semiconductor device includes a source/drain feature in a substrate. The source/drain feature has an upper portion and a lower portion, the upper portion having a lower concentration of Ge than the lower portion. A Si-containing layer over the source/drain feature includes a metal silicide layer.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen Chu HSIAO, Lai Wan CHONG, Chun-Chieh WANG, Ying Min CHOU, Hsiang Hsiang KO, Ying-Lang WANG