Patents by Inventor Hsiang Hu

Hsiang Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817399
    Abstract: A device includes a semiconductor chip, a molding compound, an insulating structure, an under-bump-metallurgy (UBM), a conductive ball, and a protection layer. The molding compound laterally surrounds the semiconductor chip. The insulating structure is over the semiconductor chip and the molding compound. The UBM is over the insulating structure and is electrically connected to the semiconductor chip. The conductive ball is in contact with the UBM. The protection layer extends from the UBM to the molding compound.
    Type: Grant
    Filed: June 6, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zi-Jheng Liu, Jo-Lin Lan, Yu-Hsiang Hu, Hung-Jui Kuo
  • Patent number: 11817352
    Abstract: A method of fabricating a redistribution circuit structure including the following steps is provided. A conductive via is formed. A photosensitive dielectric layer is formed to cover the conductive via. The photosensitive dielectric layer is partially removed to reveal the conductive via at least through an exposure and development process. A redistribution wiring is formed on the photosensitive dielectric layer and the revealed conductive via.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Han Wang, Yu-Hsiang Hu, Hung-Jui Kuo
  • Publication number: 20230359056
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Inventors: Hsin-Yu CHEN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, JI-Hong CHIANG, Yen-Chiang LIU, Jiun-Jie CHIOU, Li-Yang TU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, Lavanya SANAGAVARAPU, Han-Zong PAN, Hsi-Cheng HSU
  • Publication number: 20230360985
    Abstract: A package includes a die, an encapsulant, and a redistribution structure. The encapsulant laterally encapsulates the die. The redistribution structure is over the die and the encapsulant. The redistribution structure partially exposes the die. A top surface of the redistribution structure is slanted downward continuously from an edge of the package toward an interior of the package.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 9, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Chu, Hung-Jui Kuo, Yu-Hsiang Hu, Sih-Hao Liao
  • Publication number: 20230352445
    Abstract: Alignment of devices formed on substrates that are to be bonded may be achieved through the use of scribe lines between the devices, where the scribe lines progressively increase or decrease in size from a center to an edge of one or more of the substrates to compensate for differences in the thermal expansion rates of the substrates. The devices on the substrates are brought into alignment as the substrates are heated during a bonding operation due to the progressively increased or decreased sizes of the scribe lines. The scribe lines may be arranged in a single direction in a substrate to compensate for thermal expansion along a single axis of the substrate or may be arranged in a plurality of directions to compensate for actinomorphic thermal expansion.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 2, 2023
    Inventors: Hsi-Cheng HSU, Jui-Chun WENG, Ching-Hsiang HU, Ji-Hong CHIANG, Kuo-Hao LEE, Chia-Yu LIN, Chia-Chun HUNG, Yen-Chieh TU, Chien-Tai SU, Hsin-Yu CHEN
  • Publication number: 20230343604
    Abstract: A method of manufacturing a semiconductor device includes placing a polymer raw material mixture over a substrate. The polymer raw material may include a polymer precursor, a photosensitizer, and an additive. The polymer raw material mixture is exposed to radiation to form a dielectric layer and cured at a temperature of between about 150° C. and about 230° C.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 26, 2023
    Inventors: Sih-Hao Liao, Yu-Hsiang Hu, Hung-Jui Kuo, Chen-Hua Yu
  • Patent number: 11798893
    Abstract: A package includes a die and a redistribution structure. The die has an active surface and is wrapped around by an encapsulant. The redistribution structure disposed on the active surface of the die and located above the encapsulant, wherein the redistribution structure comprises a conductive via connected with the die, a routing pattern located above and connected with the conductive via, and a seal ring structure, the seal ring structure includes a first seal ring element and a second seal ring element located above and connected with the first seal ring element, wherein the second seal ring element includes a seed layer sandwiched between the first seal ring element and the second seal ring element, and a top surface of the first seal ring element is substantially coplanar with a top surface of the conductive via.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Chu, Hung-Jui Kuo, Jhih-Yu Wang, Yu-Hsiang Hu
  • Patent number: 11798857
    Abstract: A composition for a sacrificial film includes a polymer, a solvent, and a plasticize compound having an aromatic ring structure. A package includes a die, through insulating vias (TIV), an encapsulant, and a redistribution structure. The die includes a sensing component. The TIVs surround the die. The encapsulant laterally encapsulates the die and the TIVs. The redistribution structure is over the die, the TIVs, and the encapsulant. The redistribution structure has an opening exposing the sensing component of the die. A top surface of the redistribution structure is slanted.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Chu, Hung-Jui Kuo, Yu-Hsiang Hu, Sih-Hao Liao
  • Publication number: 20230335503
    Abstract: A chip package includes a semiconductor die laterally encapsulating by an insulating encapsulant, a first dielectric portion, conductive vias, conductive traces and a second dielectric portion. The first dielectric portion covers the semiconductor die and the encapsulant. The conductive vias penetrate through the first dielectric portion and electrically connected to the semiconductor die. The conductive traces are disposed on the first dielectric portion. The second dielectric portion is disposed on the first dielectric portion and covering the conductive traces, wherein a first minimum lateral width of a conductive trace among the conductive traces is smaller than a second minimum lateral width of a conductive via among the conductive vias. A method of forming the chip package is also provided.
    Type: Application
    Filed: June 19, 2023
    Publication date: October 19, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hsiang Hu, Chen-Hua Yu, Hung-Jui Kuo
  • Patent number: 11791313
    Abstract: A semiconductor package includes a semiconductor die and a redistribution structure. The semiconductor die is laterally surrounded by a molding compound, and the semiconductor die has a conductive pillar and a complex compound sheath sandwiched between the conductive pillar and the molding compound. The redistribution structure is electrically connected with the semiconductor die and comprises a first via portion at a first side of the redistribution structure and a second via portion at a second side of the redistribution structure, and a base angle of the second via portion is greater than a base angle of the first via portion.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: October 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Chih Chen, Hung-Jui Kuo, Yu-Hsiang Hu, Sih-Hao Liao, Hung-Chun Cho
  • Publication number: 20230326822
    Abstract: A redistribution structure is made using filler-free insulating materials with a high shrinkage rate. As a result, good planarity may be achieved without the need to perform a planarization of each insulating layer of the redistribution structure, thereby simplifying the formation of the redistribution structure.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Wei-Chih Chen, Sih-Hao Liao, Yu-Hsiang Hu, Hung-Jui Kuo
  • Patent number: 11782284
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: October 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yu Chen, Yen-Chiang Liu, Jiun-Jie Chiou, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Hsi-Cheng Hsu
  • Publication number: 20230317664
    Abstract: In an embodiment, a device includes: a semiconductor die including a semiconductor material; a through via adjacent the semiconductor die, the through via including a metal; an encapsulant around the through via and the semiconductor die, the encapsulant including a polymer resin; and an adhesion layer between the encapsulant and the through via, the adhesion layer including an adhesive compound having an aromatic compound and an amino group, the amino group bonded to the polymer resin of the encapsulant, the aromatic compound bonded to the metal of the through via, the aromatic compound being chemically inert to the semiconductor material of the semiconductor die.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Hung-Chun Cho, Sih-Hao Liao, Yu-Hsiang Hu, Hung-Jui Kuo
  • Publication number: 20230307251
    Abstract: A semiconductor device and method that comprise a first dielectric layer over a encapsulant that encapsulates a via and a semiconductor die is provided. A redistribution layer is over the first dielectric layer, and a second dielectric layer is over the redistribution layer, and the second dielectric layer comprises a low-temperature polyimide material.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 28, 2023
    Inventors: Zi-Jheng Liu, Yu-Hsiang Hu, Jo-Lin Lan, Sih-Hao Liao, Chen-Cheng Kuo, Hung-Jui Kuo, Chung-Shi Liu, Chen-Hua Yu, Meng-Wei Chou
  • Patent number: 11768338
    Abstract: An optical interconnect structure including a base substrate, an optical waveguide, a first reflector, a second reflector, a dielectric layer, a first lens, and a second lens is provided. The optical waveguide is embedded in the base substrate. The optical waveguide includes a first end portion and a second end portion opposite to the first end portion. The first reflector is disposed between the base substrate and the first end portion of the optical waveguide. The second reflector is disposed between the base substrate and the second end portion of the optical waveguide. The dielectric layer covers the base substrate and the optical waveguide. The first lens is disposed on the dielectric layer and located above the first end portion of the optical waveguide. The second lens is disposed on the dielectric layer and located above the second end portion of the optical waveguide.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Yu-Hsiang Hu, Chewn-Pu Jou, Feng-Wei Kuo
  • Patent number: 11764124
    Abstract: A semiconductor package includes a semiconductor die including a sensing component, an encapsulant laterally covering the semiconductor die, a through insulator via (TIV) and a dummy TIV penetrating through the encapsulant, a patterned dielectric layer disposed on the top surfaces of the encapsulant and the semiconductor die, a conductive pattern disposed on and inserted into the patterned dielectric layer to be in contact with the TIV and the semiconductor die, and a first dummy conductive pattern disposed on the patterned dielectric layer and connected to the dummy TIV. The top surface of the encapsulant is above and rougher than a top surface of the semiconductor die, and the sensing component is accessibly exposed by the patterned dielectric layer.
    Type: Grant
    Filed: March 27, 2022
    Date of Patent: September 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Chu, Hung-Jui Kuo, Yu-Hsiang Hu, Sih-Hao Liao, Tian Hu
  • Publication number: 20230290733
    Abstract: A package structure includes a plurality of semiconductor die, an insulating encapsulant and a redistribution layer. Each of the plurality of semiconductor dies includes a semiconductor substrate, conductive pads disposed on the semiconductor substrate, conductive posts disposed on the conductive pads, and at least one alignment mark located on the semiconductor substrate. The insulating encapsulant is encapsulating the plurality of semiconductor dies. The redistribution layer is disposed on the insulating encapsulant and electrically connected to the plurality of semiconductor dies.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhih-Yu Wang, Hung-Jui Kuo, Yu-Hsiang Hu, Sih-Hao Liao, Yung-Chi Chu
  • Publication number: 20230282558
    Abstract: A package structure includes a first redistribution layer, a semiconductor die and a second redistribution layer. The first redistribution layer includes a first dielectric layer, first conductive elements, second conductive elements, a top dielectric layer and an auxiliary dielectric portion. The first conductive elements and the second conductive elements are disposed on the first dielectric layer with a first pattern density and a second pattern density respectively. The top dielectric layer is disposed on the first dielectric layer and covering a top surface of the second conductive elements. The auxiliary dielectric portion is disposed in between the first dielectric layer and the top dielectric layer, and covering a top surface of the first conductive elements. The semiconductor die is disposed on the first redistribution layer. The second redistribution layer is disposed on the semiconductor die, and electrically connected to the semiconductor die and the first redistribution layer.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Han Wang, Sih-Hao Liao, Wei-Chih Chen, Hung-Chun Cho, Ting-Chen Tseng, Yu-Hsiang Hu, Hung-Jui Kuo
  • Publication number: 20230275040
    Abstract: A method includes forming a reconstructed wafer including encapsulating a device die in an encapsulant, forming a dielectric layer over the device die and the encapsulant, forming a plurality of redistribution lines extending into the dielectric layer to electrically couple to the device die, and forming a metal ring in a common process for forming the plurality of redistribution lines. The metal ring encircles the plurality of redistribution lines, and the metal ring extends into scribe lines of the reconstructed wafer. A die-saw process is performed along scribe lines of the reconstructed wafer to separate a package from the reconstructed wafer. The package includes the device die and at least a portion of the metal ring.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Inventors: Wan-Yu Lee, Chiang Lin, Yueh-Ting Lin, Hua-Wei Tseng, Li-Hsien Huang, Yu-Hsiang Hu
  • Patent number: 11742320
    Abstract: Alignment of devices formed on substrates that are to be bonded may be achieved through the use of scribe lines between the devices, where the scribe lines progressively increase or decrease in size from a center to an edge of one or more of the substrates to compensate for differences in the thermal expansion rates of the substrates. The devices on the substrates are brought into alignment as the substrates are heated during a bonding operation due to the progressively increased or decreased sizes of the scribe lines. The scribe lines may be arranged in a single direction in a substrate to compensate for thermal expansion along a single axis of the substrate or may be arranged in a plurality of directions to compensate for actinomorphic thermal expansion.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Cheng Hsu, Jui-Chun Weng, Ching-Hsiang Hu, Ji-Hong Chiang, Kuo-Hao Lee, Chia-Yu Lin, Chia-Chun Hung, Yen-Chieh Tu, Chien-Tai Su, Hsin-Yu Chen