Patents by Inventor Hsiang-Ju LIAO

Hsiang-Ju LIAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240387644
    Abstract: Ruthenium of a metal gate (MG) and/or a middle end of line (MEOL) structure is annealed to reduce, or even eliminate, seams after the ruthenium is deposited. Because the annealing reduces (or removes) seams in deposited ruthenium, electrical performance is increased because resistivity of the MG and/or the MEOL structure is decreased. Additionally, for MGs, the annealing generates a more even deposition profile, which results in a timed etching process producing a uniform gate height. As a result, more of the MGs will be functional after etching, which increases yield during production of the electronic device.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 21, 2024
    Inventors: Hsin-Han TSAI, Hsiang-Ju LIAO, Yi-Lun LI, Cheng-Lung HUNG, Weng CHANG, Chi On CHUI, Jo-Chun HUNG, Chih-Wei LEE, Chia-Wei CHEN
  • Publication number: 20240287589
    Abstract: Compositions including photoreactive and cleavable probes and methods of using the probes. The probes may include a tag conjugatable to a label, a cleavable linker linkable to a bait molecule, and a light activated warhead, which may be configured to covalently bond an anchoring strand to a probing strand upon application of light energy. The compositions and methods may be useful for analyzing biomolecules, such as identifying proximal molecules in cell or tissue samples.
    Type: Application
    Filed: March 20, 2024
    Publication date: August 29, 2024
    Inventors: Chih-Wei CHANG, Hsiang-Ju KAI, Chia-Wen CHUNG, Yi-De CHEN, Jung-Chi LIAO
  • Publication number: 20230343834
    Abstract: Ruthenium of a metal gate (MG) and/or a middle end of line (MEOL) structure is annealed to reduce, or even eliminate, seams after the ruthenium is deposited. Because the annealing reduces (or removes) seams in deposited ruthenium, electrical performance is increased because resistivity of the MG and/or the MEOL structure is decreased. Additionally, for MGs, the annealing generates a more even deposition profile, which results in a timed etching process producing a uniform gate height. As a result, more of the MGs will be functional after etching, which increases yield during production of the electronic device.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 26, 2023
    Inventors: Hsin-Han TSAI, Hsiang-Ju LIAO, Yi-Lun LI, Cheng-Lung HUNG, Weng CHANG, Chi On CHUI, Jo-Chun HUNG, Chih-Wei LEE, Chia-Wei CHEN
  • Publication number: 20230268409
    Abstract: A semiconductor device structure and a formation method are provided. The method includes forming a fin structure over a substrate, and the fin structure has multiple sacrificial layers and multiple semiconductor layers laid out alternately. The method also includes removing the sacrificial layers to release multiple semiconductor nanostructures made up of remaining portions of the semiconductor lavers. The method further includes forming a gate dielectric layer to wrap around the semiconductor nanostructures and forming a first metal-containing layer over the gate dielectric layer to wrap around the semiconductor nanostructures. In addition, the method includes introducing oxygen-containing plasma on the first metal-containing layer to transform an upper portion of the first metal-containing layer into a metal oxide layer. The method includes forming a second metal-containing layer over the metal oxide layer.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei CHEN, Jo-Chun HUNG, Chih-Wei LEE, Hui-Chi CHEN, Hsin-Han TSAI, Hsiang-Ju LIAO, Yi-Lun LI, Cheng-Lung HUNG, Chi On CHUI