Patents by Inventor Hsiang-Ku Shen

Hsiang-Ku Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210287973
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes a redistribution layer including a first conductive feature and a second conductive feature, a first contact feature disposed over and electrically coupled to the first conductive feature, a second contact feature disposed over and electrically coupled to the second conductive feature, and a passivation feature extending from between the first conductive feature and the second conductive feature between the first contact feature and the second contact feature. The passivation feature includes a dielectric feature and a dielectric layer. The dielectric layer is disposed on a planar top surface of the dielectric feature and a composition of the dielectric feature is different from a composition of the dielectric layer.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 16, 2021
    Inventors: Hsiang-Ku Shen, Chun-Li Lin, Dian-Hau Chen
  • Patent number: 11114373
    Abstract: Semiconductor devices, integrated circuits and methods of forming the same are provided. In one embodiment, a semiconductor device includes a metal-insulator-metal structure which includes a bottom conductor plate layer including a first opening and a second opening, a first dielectric layer over the bottom conductor plate layer, a middle conductor plate layer over the first dielectric layer and including a third opening, a first dummy plate disposed within the third opening, and a fourth opening, a second dielectric layer over the middle conductor plate layer, and a top conductor plate layer over the second dielectric layer and including a fifth opening, a second dummy plate disposed within the fifth opening, a sixth opening, and a third dummy plate disposed within the sixth opening. The first opening, the first dummy plate, and the second dummy plate are vertically aligned.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: September 7, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yuan-Yang Hsiao, Hsiang-Ku Shen, Dian-Hau Chen
  • Publication number: 20210265262
    Abstract: Semiconductor devices, integrated circuits and methods of forming the same are provided. In one embodiment, a semiconductor device includes a metal-insulator-metal structure which includes a bottom conductor plate layer including a first opening and a second opening, a first dielectric layer over the bottom conductor plate layer, a middle conductor plate layer over the first dielectric layer and including a third opening, a first dummy plate disposed within the third opening, and a fourth opening, a second dielectric layer over the middle conductor plate layer, and a top conductor plate layer over the second dielectric layer and including a fifth opening, a second dummy plate disposed within the fifth opening, a sixth opening, and a third dummy plate disposed within the sixth opening. The first opening, the first dummy plate, and the second dummy plate are vertically aligned.
    Type: Application
    Filed: February 26, 2020
    Publication date: August 26, 2021
    Inventors: Yuan-Yang Hsiao, Hsiang-Ku Shen, Dian-Hau Chen
  • Publication number: 20210249350
    Abstract: Semiconductor devices and methods of forming the same are provided. A method according to an embodiment includes receiving a substrate including a lower contact feature, depositing a first dielectric layer over a substrate, forming a metal-insulator-metal (MIM) structure over the first dielectric layer, depositing a second dielectric layer over the MIM structure, performing a first etch process to form an opening that extends through the second dielectric layer to expose the MIM structure, performing a second etch process to extend the opening through the MIM structure to expose the first dielectric layer; and performing a third etch process to further extend the opening through the first dielectric layer to expose the lower contact feature. Etchants of the first etch process and the third etch process include fluorine while the etchant of the second etch process is free of fluorine.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 12, 2021
    Inventors: Hsiang-Ku Shen, Jian-Ming Huang, Han-Yi Chen, Ecko Lu, Hsiang-Yu Tsai, Chih-Hung Lu, Wen-Tung Chen
  • Patent number: 11056556
    Abstract: A method of fabricating a metal-insulator-metal (MIM) capacitor structure includes forming a bottom electrode, forming a first oxide layer adjacent the bottom electrode, and depositing a first high-k dielectric layer over the bottom electrode and the first oxide layer. A middle electrode is then formed over the first high-k dielectric layer and a second oxide layer is formed adjacent the middle electrode. A second high-k dielectric layer may be deposited over the middle electrode and the second oxide layer and a top electrode over the second high-k dielectric layer.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: July 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Ku Shen, Ming-Hong Kao, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen
  • Patent number: 11031325
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes a redistribution layer including a first conductive feature and a second conductive feature, a first contact feature disposed over and electrically coupled to the first conductive feature, a second contact feature disposed over and electrically coupled to the second conductive feature, and a passivation feature extending from between the first conductive feature and the second conductive feature between the first contact feature and the second contact feature. The passivation feature includes a dielectric feature and a dielectric layer. The dielectric layer is disposed on a planar top surface of the dielectric feature and a composition of the dielectric feature is different from a composition of the dielectric layer.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Chun-Li Lin, Dian-Hau Chen
  • Publication number: 20210159224
    Abstract: A device includes a first die and a second die. The first die includes: a first substrate that contains first electrical circuitry, a first interconnection structure disposed over the first substrate, a first dielectric layer disposed over the first interconnection structure, and a plurality of first bonding pads disposed over the first dielectric layer. The second die includes: a second substrate that contains second electrical circuitry, a second interconnection structure disposed over the second substrate, a second dielectric layer disposed over the second interconnection structure, and a plurality of second bonding pads disposed over the second dielectric layer. The first bonding pads of the first die are bonded to the second bonding pads of the second die. At least one of the first die or the second die includes a metal-insulator-metal (MIM) capacitor. The MIM capacitor includes more than two metal layers that are stacked over one another.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Hsiang-Ku Shen, Ying-Ju Chen, Hsien-Wei Chen
  • Publication number: 20210118783
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes a redistribution layer including a first conductive feature and a second conductive feature, a first contact feature disposed over and electrically coupled to the first conductive feature, a second contact feature disposed over and electrically coupled to the second conductive feature, and a passivation feature extending from between the first conductive feature and the second conductive feature between the first contact feature and the second contact feature. The passivation feature includes a dielectric feature and a dielectric layer. The dielectric layer is disposed on a planar top surface of the dielectric feature and a composition of the dielectric feature is different from a composition of the dielectric layer.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Inventors: Hsiang-Ku Shen, Chun-Li Lin, Dian-Hau Chen
  • Publication number: 20210118782
    Abstract: A package structure and method for forming the same are provided. The package structure includes a conductive layer formed over a first substrate, and a dielectric layer formed over the conductive layer. The package structure includes a metal-insulator-metal (MIM) capacitor embedded in the dielectric layer, and a shielding layer formed over the MIM capacitor. The shielding layer is insulated from the MIM capacitor by the dielectric layer. The package structure also includes a first through via formed through the MIM capacitor, and the first through via is connected to the conductive layer, and the first through via is insulated from the shielding layer.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Fan HUANG, Hsiang-Ku SHEN, Hui-Chi CHEN, Tien-I BAO, Dian-Hau CHEN, Yen-Ming CHEN
  • Publication number: 20210098400
    Abstract: A semiconductor structure includes a first passivation layer disposed over a metal line, a copper-containing RDL disposed over the first passivation layer, where the copper-containing RDL is electrically coupled to the metal line and where a portion of the copper-containing RDL in contact with a top surface of the first passivation layer forms an acute angle, and a second passivation layer disposed over the copper-containing RDL, where an interface between the second passivation layer and a top surface of the copper-containing RDL is curved. The semiconductor structure may further include a polymeric layer disposed over the second passivation layer, where a portion of the polymeric layer extends to contact the copper-containing RDL, a bump electrically coupled to the copper-containing RDL, and a solder layer disposed over the bump.
    Type: Application
    Filed: July 28, 2020
    Publication date: April 1, 2021
    Inventors: Hsiang-Ku Shen, Dian-Hau Chen
  • Publication number: 20210098564
    Abstract: A method and semiconductor device including a substrate having one or more semiconductor devices. In some embodiments, the device further includes a first passivation layer disposed over the one or more semiconductor devices. The device may further include a metal-insulator-metal (MIM) capacitor structure formed over the first passivation layer. In addition, the device may further include a second passivation layer disposed over the MIM capacitor structure. In various examples, a stress-reduction feature is embedded within the second passivation layer. In some embodiments, the stress-reduction feature includes a first nitrogen-containing layer, an oxygen-containing layer disposed over the first nitrogen-containing layer, and a second nitrogen-containing layer disposed over the oxygen containing layer.
    Type: Application
    Filed: September 22, 2020
    Publication date: April 1, 2021
    Inventors: Jin-Mu YIN, Hung-Chao KAO, Hsiang-Ku SHEN, Dian-Hau CHEN, Yen-Ming CHEN
  • Publication number: 20210020633
    Abstract: In a method of manufacturing a semiconductor device, first and second gate structures are formed. The first (second) gate structure includes a first (second) gate electrode layer and first (second) sidewall spacers disposed on both side faces of the first (second) gate electrode layer. The first and second gate electrode layers are recessed and the first and second sidewall spacers are recessed, thereby forming a first space and a second space over the recessed first and second gate electrode layers and first and second sidewall spacers, respectively. First and second protective layers are formed in the first and second spaces, respectively. First and second etch-stop layers are formed on the first and second protective layers, respectively. A first depth of the first space above the first sidewall spacers is different from a second depth of the first space above the first gate electrode layer.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: Hsiang-Ku SHEN, Chih Wei LU, Hui-Chi CHEN, Jeng-Ya David YEH
  • Publication number: 20200411377
    Abstract: A semiconductor device includes a first gate structure disposed on a substrate and extending in a first direction. The first gate structure includes a first gate electrode, a first cap insulating layer disposed over the first gate electrode, first sidewall spacers disposed on opposing side faces of the first gate electrode and the first cap insulating layer and second sidewall spacers disposed over the first sidewall spacers. The semiconductor device further includes a first protective layer formed over the first cap insulating layer, the first sidewall spacers and the second sidewall spacers. The first protective layer has a n-shape having a head portion and two leg portions in a cross section along a second direction perpendicular to the first direction.
    Type: Application
    Filed: August 3, 2020
    Publication date: December 31, 2020
    Inventors: Hui-Chi CHEN, HSIANG-KU SHEN, JENG-YA YEH
  • Publication number: 20200365683
    Abstract: The present disclosure is directed to a method of fabrication a semiconductor structure. The method includes providing a substrate and forming a bottom electrode over the substrate, wherein a terminal end of the bottom electrode has a tapered sidewall. The method also includes depositing an insulating layer over the bottom electrode and forming a top electrode over the insulating layer, wherein a terminal end of the top electrode has a vertical sidewall.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chih-Fan Huang, Hung-Chao Kao, Yuan-Yang Hsiao, Tsung-Chieh Hsiao, Hsiang-Ku Shen, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen
  • Patent number: 10797048
    Abstract: In a method of manufacturing a semiconductor device, first and second gate structures are formed. The first (second) gate structure includes a first (second) gate electrode layer and first (second) sidewall spacers disposed on both side faces of the first (second) gate electrode layer. The first and second gate electrode layers are recessed and the first and second sidewall spacers are recessed, thereby forming a first space and a second space over the recessed first and second gate electrode layers and first and second sidewall spacers, respectively. First and second protective layers are formed in the first and second spaces, respectively. First and second etch-stop layers are formed on the first and second protective layers, respectively. A first depth of the first space above the first side wall spacers is different from a second depth of the first space above the first gate electrode layer.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 6, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Chih Wei Lu, Janet Chen, Jeng-Ya David Yeh
  • Patent number: 10734474
    Abstract: A metal-insulator-metal (MIM) capacitor structure includes a semiconductor substrate and a bottom conductive layer above the semiconductor substrate. The bottom conductive layer has a slanted sidewall with respect to a top surface of the semiconductor substrate. The MIM capacitor structure further includes a top conductive layer above the bottom conductive layer. The top conductive layer has a vertical sidewall with respect to the top surface of the semiconductor substrate. The MIM capacitor structure further includes an insulating layer interposed between the bottom conductive layer and the top conductive layer. The insulating layer covers the slanted sidewall of the bottom conductive layer.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Fan Huang, Hung-Chao Kao, Yuan-Yang Hsiao, Tsung-Chieh Hsiao, Hsiang-Ku Shen, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen
  • Patent number: 10734283
    Abstract: A semiconductor device includes a first gate structure disposed on a substrate and extending in a first direction. The first gate structure includes a first gate electrode, a first cap insulating layer disposed over the first gate electrode, first sidewall spacers disposed on opposing side faces of the first gate electrode and the first cap insulating layer and second sidewall spacers disposed over the first sidewall spacers. The semiconductor device further includes a first protective layer formed over the first cap insulating layer, the first sidewall spacers and the second sidewall spacers. The first protective layer has a ?-shape having a head portion and two leg portions in a cross section along a second direction perpendicular to the first direction.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hui-Chi Chen, Hsiang-Ku Shen, Jeng-Ya David Yeh
  • Publication number: 20200176557
    Abstract: Methods of forming a 3-dimensional metal-insulator-metal super high density (3D-MIM-SHD) capacitor and semiconductor device are disclosed herein. A method includes depositing a base layer of a first dielectric material over a semiconductor substrate and etching a series of recesses in the base layer. Once the series of recesses have been etched into the base layer, a series of conductive layers and dielectric layers may be deposited within the series of recesses to form a three dimensional corrugated stack of conductive layers separated by the dielectric layers. A first contact plug may be formed through a middle conductive layer of the corrugated stack and a second contact plug may be formed through a top conductive layer and a bottom conductive layer of the corrugated stack. The contact plugs electrically couple the conductive layers to one or more active devices of the semiconductor substrate.
    Type: Application
    Filed: May 1, 2019
    Publication date: June 4, 2020
    Inventors: Jin-Mu Yin, Hung-Chao Kao, Dian-Hau Chen, Hui-Chi Chen, Hsiang-Ku Shen, Yen-Ming Chen
  • Publication number: 20200105863
    Abstract: A method of fabricating a metal-insulator-metal (MIM) capacitor structure includes forming a bottom electrode, forming a first oxide layer adjacent the bottom electrode, and depositing a first high-k dielectric layer over the bottom electrode and the first oxide layer. A middle electrode is then formed over the first high-k dielectric layer and a second oxide layer is formed adjacent the middle electrode. A second high-k dielectric layer may be deposited over the middle electrode and the second oxide layer and a top electrode over the second high-k dielectric layer.
    Type: Application
    Filed: June 12, 2019
    Publication date: April 2, 2020
    Inventors: Hsiang-Ku SHEN, Ming-Hong KAO, Hui-Chi CHEN, Dian-Hau CHEN, Yen-Ming CHEN
  • Publication number: 20200035779
    Abstract: A metal-insulator-metal (MIM) capacitor structure includes a semiconductor substrate and a bottom conductive layer above the semiconductor substrate. The bottom conductive layer has a slanted sidewall with respect to a top surface of the semiconductor substrate. The MIM capacitor structure further includes a top conductive layer above the bottom conductive layer. The top conductive layer has a vertical sidewall with respect to the top surface of the semiconductor substrate. The MIM capacitor structure further includes an insulating layer interposed between the bottom conductive layer and the top conductive layer. The insulating layer covers the slanted sidewall of the bottom conductive layer.
    Type: Application
    Filed: October 10, 2018
    Publication date: January 30, 2020
    Inventors: Chih-Fan Huang, Hung-Chao Kao, Yuan-Yang Hsiao, Tsung-Chieh Hsiao, Hsiang-Ku Shen, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen