Patents by Inventor Hsiang-Ku Shen

Hsiang-Ku Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170141104
    Abstract: A method of forming a semiconductor device provides a precursor that includes a substrate having first and second regions, wherein the first region includes an insulator and the second region includes source, drain, and channel regions of a transistor. The precursor further includes gate stacks over the insulator, and gate stacks over the channel regions. The precursor further includes a first dielectric layer over the gate stacks. The method further includes partially recessing the first dielectric layer; forming a second dielectric layer over the recessed first dielectric layer; and forming a contact etch stop (CES) layer over the second dielectric layer. In an embodiment, the method further includes forming gate via holes over the gate stacks, forming source and drain (S/D) via holes over the S/D regions, and forming vias in the gate via holes and S/D via holes.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 18, 2017
    Inventors: Chih Wei Lu, Chung-Ju Lee, Chien-Hua Huang, Hsiang-Ku Shen, Zhao-Cheng Chen
  • Patent number: 9633999
    Abstract: A method of forming a semiconductor device provides a precursor that includes a substrate having first and second regions, wherein the first region includes an insulator and the second region includes source, drain, and channel regions of a transistor. The precursor further includes gate stacks over the insulator, and gate stacks over the channel regions. The precursor further includes a first dielectric layer over the gate stacks. The method further includes partially recessing the first dielectric layer; forming a second dielectric layer over the recessed first dielectric layer; and forming a contact etch stop (CES) layer over the second dielectric layer. In an embodiment, the method further includes forming gate via holes over the gate stacks, forming source and drain (S/D) via holes over the S/D regions, and forming vias in the gate via holes and S/D via holes.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: April 25, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih Wei Lu, Chung-Ju Lee, Chien-Hua Huang, Hsiang-Ku Shen, Zhao-Cheng Chen
  • Patent number: 9595477
    Abstract: A method is described which includes providing a substrate and forming a first spacer material layer abutting a gate structure on the substrate. A second spacer material layer is formed adjacent and abutting the gate structure and overlying the first spacer material layer. The first spacer material layer and the second spacer material layer are then etched concurrently to form first and second spacers, respectively. An epitaxy region is formed (e.g., grown) on the substrate which includes an interface with each of the first and second spacers. The second spacer may be subsequently removed and the first spacer remain on the device decreases the aspect ratio for an ILD gap fill. An example composition of the first spacer is SiCN.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Patent number: 9570613
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a fin structure over the semiconductor substrate. The semiconductor device structure also includes a gate stack over a portion of the fin structure, and the fin structure includes an intermediate portion under the gate stack and upper portions besides the intermediate portion. The semiconductor device structure further includes a contact layer over the fin structure. The contact layer includes a metal material, and the upper portions of the fin structure also include the metal material.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: February 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Hsuan Lee, Cheng-Yu Yang, Hsiang-Ku Shen, Han-Ting Tsai, Yimin Huang
  • Patent number: 9496264
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a first gate stack and a second gate stack over the semiconductor substrate. The semiconductor device structure also includes a first doped structure over the semiconductor substrate and adjacent to the first gate stack. The first doped structure includes a III-V compound semiconductor material and a dopant. The semiconductor device structure further includes a second doped structure over the semiconductor substrate and adjacent to the second gate stack. The second doped structure includes the III-V compound semiconductor material and the dopant. One of the first doped structure and the second doped structure is an n-type semiconductor structure, and the other one of the first doped structure and the second doped structure is a p-type semiconductor structure.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Hsuan Lee, Cheng-Yu Yang, Hsiang-Ku Shen, Han-Ting Tsai, Yimin Huang
  • Publication number: 20160240651
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a fin structure over the semiconductor substrate. The semiconductor device structure also includes a gate stack over a portion of the fin structure, and the fin structure includes an intermediate portion under the gate stack and upper portions besides the intermediate portion. The semiconductor device structure further includes a contact layer over the fin structure. The contact layer includes a metal material, and the upper portions of the fin structure also include the metal material.
    Type: Application
    Filed: February 13, 2015
    Publication date: August 18, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Kai-Hsuan LEE, Cheng-Yu YANG, Hsiang-Ku SHEN, Han-Ting TSAI, Yimin HUANG
  • Publication number: 20160240536
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a first gate stack and a second gate stack over the semiconductor substrate. The semiconductor device structure also includes a first doped structure over the semiconductor substrate and adjacent to the first gate stack. The first doped structure includes a III-V compound semiconductor material and a dopant. The semiconductor device structure further includes a second doped structure over the semiconductor substrate and adjacent to the second gate stack. The second doped structure includes the III-V compound semiconductor material and the dopant. One of the first doped structure and the second doped structure is an n-type semiconductor structure, and the other one of the first doped structure and the second doped structure is a p-type semiconductor structure.
    Type: Application
    Filed: February 13, 2015
    Publication date: August 18, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Kai-Hsuan LEE, Cheng-Yu YANG, Hsiang-Ku SHEN, Han-Ting TSAI, Yimin HUANG
  • Publication number: 20120187459
    Abstract: A method is described which includes providing a substrate and forming a first spacer material layer abutting a gate structure on the substrate. A second spacer material layer is formed adjacent and abutting the gate structure and overlying the first spacer material layer. The first spacer material layer and the second spacer material layer are then etched concurrently to form first and second spacers, respectively. An epitaxy region is formed (e.g., grown) on the substrate which includes an interface with each of the first and second spacers. The second spacer may be subsequently removed and the first spacer remain on the device decreases the aspect ratio for an ILD gap fill. An example composition of the first spacer is SiCN.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang