Patents by Inventor Hsiang Pi Chang

Hsiang Pi Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096993
    Abstract: A method for tuning a threshold voltage of a transistor is disclosed. A channel layer is formed over a substrate. An interfacial layer is formed over and surrounds the channel layer. A gate dielectric layer is formed over and surrounds the interfacial layer. A dipole layer is formed over and wraps around the gate dielectric layer by performing a cyclic deposition etch process, and the dipole layer includes dipole metal elements and has a substantially uniform thickness. A thermal drive-in process is performed to drive the dipole metal elements in the dipole layer into the gate dielectric layer to form an interfacial dipole surface, and then the dipole layer is removed.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shen-Yang Lee, Hsiang-Pi Chang, Huang-Lin Chao
  • Patent number: 11908702
    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a gate opening on the fin structure, forming a metallic oxide layer within the gate opening, forming a first dielectric layer on the metallic oxide layer, forming a second dielectric layer on the first dielectric layer, forming a work function metal (WFM) layer on the second dielectric layer, and forming a gate metal fill layer on the WFM layer. The forming the first dielectric layer includes depositing an oxide material with an oxygen areal density less than an oxygen areal density of the metallic oxide layer.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Pi Chang, Chung-Liang Cheng, I-Ming Chang, Yao-Sheng Huang, Huang-Lin Chao
  • Publication number: 20240047272
    Abstract: A semiconductor structure includes a first fin structure and a second fin structure, a first dielectric layer disposed over the first fin structure, a second dielectric layer disposed over the second fin structure, a first gate electrode disposed over the first dielectric layer, and a second gate electrode disposed over the second dielectric layer. A thickness of the first dielectric layer and a thickness of the second dielectric layer are equal. The second fin structure includes an outer region and an inner region, and a Ge concentration in the outer portion is less than Ge concentration in the inner portion.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 8, 2024
    Inventors: I-MING CHANG, CHUNG-LIANG CHENG, HSIANG-PI CHANG, HUNG-CHANG SUN, YAO-SHENG HUANG, YU-WEI LU, FANG-WEI LEE, ZIWEI FANG, HUANG-LIN CHAO
  • Patent number: 11894461
    Abstract: A semiconductor device includes a semiconductor substrate, an interfacial layer formed on the semiconductor substrate, a high-k dielectric layer formed on the interfacial layer, and a conductive gate electrode layer formed on the high-k dielectric layer. At least one of the high-k dielectric layer and the interfacial layer is doped with: a first dopant species, a second dopant species, and a third dopant species. The first dopant species and the second dopant species form a plurality of first dipole elements having a first polarity. The third dopant species forms a plurality of second dipole elements having a second polarity, and the first and second polarities are opposite.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: February 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Pi Chang, Yen-Tien Tung, Dawei Heh, Chung-Liang Cheng, I-Ming Chang, Yao-Sheng Huang, Tzer-Min Shen, Huang-Lin Chao
  • Publication number: 20240030311
    Abstract: A semiconductor device includes a semiconductor fin, an epitaxial region located on a side of the semiconductor fin, a silicide layer disposed on the epitaxial region, a contact plug disposed on the silicide layer and over the epitaxial region, and a self-align contact (SAC) layer disposed on the semiconductor fin. At least a part of the SAC layer is implanted with at least one implantation element. The semiconductor fin is spaced apart from the contact plug by the SAC layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 25, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: I-Ming CHANG, Yao-Sheng HUANG, Hsiang-Pi CHANG, Lo-Heng CHANG, Yun-Ju FAN, Huang-Lin CHAO
  • Publication number: 20240021709
    Abstract: A semiconductor device includes a channel layer, an interfacial layer, a gate dielectric layer, a gate electrode, dipole elements, and additional elements. The interfacial layer is disposed on the channel layer, and includes an insulating material. The gate dielectric layer is disposed over the interfacial layer such that the channel layer is separated from the gate dielectric layer by the interfacial layer. The gate electrode is disposed on the gate dielectric layer. The dipole elements are present in at least one of the interfacial layer and the gate dielectric layer in a predetermined amount such that the semiconductor device has a predetermined threshold voltage. The additional elements are located at a region where the dipole elements are present so as to reduce interfacial defects caused by the dipole elements. The additional elements are different from the dipole elements. Methods for manufacturing the semiconductor device are also disclosed.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chansyun David YANG, Huang-Lin CHAO, Hsiang-Pi CHANG, Yen-Tien TUNG, Chung-Liang CHENG, Yu-Chia LIANG, Shen-Yang LEE, Yao-Sheng HUANG, Tzer-Min SHEN, Pinyen LIN
  • Publication number: 20230411520
    Abstract: A semiconductor structure includes a plurality of semiconductor devices, each of which includes at least one channel layer, at least one interfacial layer, a gate dielectric layer, a gate electrode, and dipole elements. The at least one interfacial layer is disposed on the at least one channel layer. The gate dielectric layer is disposed over the at least one interfacial layer such that the at least one channel layer is separated from the gate dielectric layer through the at least one interfacial layer. The gate electrode is disposed on the gate dielectric layer. The dipole elements are present in the interfacial layer of at least one of the semiconductor devices in a predetermined amount such that the at least one of the semiconductor devices has a tunability of threshold voltage from that of the other of the semiconductor devices. Methods for manufacturing the semiconductor structure are also disclosed.
    Type: Application
    Filed: May 23, 2022
    Publication date: December 21, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shen-Yang LEE, Chung-Liang CHENG, Hsiang-Pi CHANG, Chun-I WU, Huang-Lin CHAO, Pinyen LIN
  • Patent number: 11842927
    Abstract: A semiconductor structure includes a substrate including a first region and a second region, a first channel layer disposed in the first region and a second channel layer disposed in the second region, a first dielectric layer disposed on the first channel layer and a second dielectric layer disposed on the second channel layer, and a first gate electrode disposed on the first dielectric layer and a second gate electrode disposed on the second dielectric layer. The first channel layer in the first region includes Ge compound of a first Ge concentration, the second channel layer in the second region includes Ge compound of a second Ge concentration. The first Ge concentration in the first channel layer is greater than the second Ge concentration in the second channel layer.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: I-Ming Chang, Chung-Liang Cheng, Hsiang-Pi Chang, Hung-Chang Sun, Yao-Sheng Huang, Yu-Wei Lu, Fang-Wei Lee, Ziwei Fang, Huang-Lin Chao
  • Publication number: 20230282753
    Abstract: A semiconductor device includes a silicon germanium channel, a germanium-free interfacial layer, a high-k dielectric layer, and a metal gate electrode. The silicon germanium channel is over a substrate. The germanium-free interfacial layer is over the silicon germanium channel. The germanium-free interfacial layer is nitridated. The high-k dielectric layer is over the germanium-free interfacial layer. The metal gate electrode is over the high-k dielectric layer.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu CHANG, Hsiang-Pi CHANG, Zi-Wei FANG
  • Patent number: 11710779
    Abstract: An integrated circuit device is provided that includes a first fin structure and a second fin structure extending from a substrate. The first fin structure is a first composition, and includes rounded corners. The second fin structure is a second composition, different than the first composition. A first interface layer is formed directly on the first fin structure including the rounded corners and a second interface layer directly on the second fin structure. The first interface layer is an oxide of the first composition and the second interface layer is an oxide of the second composition. A gate dielectric layer is formed over the first interface layer and the second interface layer.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: July 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang Cheng, I-Ming Chang, Hsiang-Pi Chang, Yu-Wei Lu, Ziwei Fang, Huang-Lin Chao
  • Patent number: 11688812
    Abstract: A method includes following steps. A silicon germanium layer is formed on a substrate. A surface layer of the silicon germanium layer is oxidized to form an interfacial layer comprising silicon oxide and germanium oxide. The interfacial layer is nitridated. A metal gate structure is formed over the nitridated interfacial layer.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Chang, Hsiang-Pi Chang, Zi-Wei Fang
  • Publication number: 20230187526
    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a gate opening on the fin structure, forming an interfacial oxide layer on the fin structure, forming a first dielectric layer over the interfacial oxide layer, forming a dipole layer between the interfacial oxide layer and the first dielectric layer, forming a second dielectric layer on the first dielectric layer, forming a work function metal (WFM) layer on the second dielectric layer, and forming a gate metal fill layer on the WFM layer. The dipole layer includes ions of first and second metals that are different from each other. The first and second metals have electronegativity values greater than an electronegativity value of a metal or a semiconductor of the first dielectric layer.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 15, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Pi CHANG, Chung-Liang CHENG, I-Ming CHANG, Yao-Sheng HUANG, Huang-Lin CHAO
  • Publication number: 20230058221
    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a gate opening on the fin structure, forming a metallic oxide layer within the gate opening, forming a first dielectric layer on the metallic oxide layer, forming a second dielectric layer on the first dielectric layer, forming a work function metal (WFM) layer on the second dielectric layer, and forming a gate metal fill layer on the WFM layer. The forming the first dielectric layer includes depositing an oxide material with an oxygen areal density less than an oxygen areal density of the metallic oxide layer.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Pi CHANG, Chung-Liang Cheng, I-Ming Chang, Yao-Sheng Huang, Huang-Lin Chao
  • Publication number: 20230057278
    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a gate opening on the fin structure, forming an interfacial oxide layer on the fin structure, forming a first dielectric layer over the interfacial oxide layer, forming a dipole layer between the interfacial oxide layer and the first dielectric layer, forming a second dielectric layer on the first dielectric layer, forming a work function metal (WFM) layer on the second dielectric layer, and forming a gate metal fill layer on the WFM layer. The dipole layer includes ions of first and second metals that are different from each other. The first and second metals have electronegativity values greater than an electronegativity value of a metal or a semiconductor of the first dielectric layer.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Pi CHANG, Chung-Liang CHENG, I-Ming CHANG, Yao-Sheng HUANG, Huang-Lin CHAO
  • Patent number: 11581416
    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a gate opening on the fin structure, forming an interfacial oxide layer on the fin structure, forming a first dielectric layer over the interfacial oxide layer, forming a dipole layer between the interfacial oxide layer and the first dielectric layer, forming a second dielectric layer on the first dielectric layer, forming a work function metal (WFM) layer on the second dielectric layer, and forming a gate metal fill layer on the WFM layer. The dipole layer includes ions of first and second metals that are different from each other. The first and second metals have electronegativity values greater than an electronegativity value of a metal or a semiconductor of the first dielectric layer.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: February 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Pi Chang, Chung-Liang Cheng, I-Ming Chang, Yao-Sheng Huang, Huang-Lin Chao
  • Publication number: 20230040346
    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The semiconductor device includes a first gate structure and a second gate structure. The first gate structure includes a first interfacial oxide (IO) layer, a first high-K (HK) dielectric layer disposed on the first interfacial oxide layer, and a first dipole layer disposed at an interface between the first IL layer and the first HK dielectric layer. The HK dielectric layer includes a rare-earth metal dopant or an alkali metal dopant. The second gate structure includes a second IL layer, a second HK dielectric layer disposed on the second IL layer, and a second dipole layer disposed at an interface between the second IL layer and the second HK dielectric layer. The second HK dielectric layer includes a transition metal dopant and the rare-earth metal dopant or the alkali metal dopant.
    Type: Application
    Filed: March 22, 2022
    Publication date: February 9, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiang-Pi CHANG, Huang-Lin CHAO, Chung-Liang CHENG, Pinyen LIN, Chun-Chun LIN, Tzu-Li LEE, Yu-Chia LIANG, Duen-Huei HOU, Wen-Chung LIU, Chun-I WU
  • Publication number: 20230009485
    Abstract: A method includes removing a first dummy gate stack and a second dummy gate stack to form a first trench and a second trench. The first dummy gate stack and the second dummy gate stack are in a first device region and a second device region, respectively. The method further includes depositing a first gate dielectric layer and a second gate dielectric layer extending into the first trench and the second trench, respectively, forming a fluorine-containing layer comprising a first portion over the first gate dielectric layer, and a second portion over the second gate dielectric layer, removing the second portion, performing an annealing process to diffuse fluorine in the first portion into the first gate dielectric layer, and at a time after the annealing process, forming a first work-function layer and a second work-function layer over the first gate dielectric layer and the second gate dielectric layer, respectively.
    Type: Application
    Filed: February 21, 2022
    Publication date: January 12, 2023
    Inventors: Hsin-Yi Lee, Weng Chang, Hsiang-Pi Chang, Huang-Lin Chao, Chung-Liang Cheng, Chi On Chui, Kun-Yu Lee, Tzer-Min Shen, Yen-Tien Tung, Chun-I Wu
  • Publication number: 20220359696
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first source/drain epitaxial feature formed over a substrate, a second source/drain epitaxial feature formed over the substrate, two or more semiconductor layers disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature, a gate electrode layer surrounding a portion of one of the two or more semiconductor layers, a first dielectric region disposed in the substrate and in contact with a first side of the first source/drain epitaxial feature, and a second dielectric region disposed in the substrate and in contact with a first side of the second source/drain epitaxial feature, the second dielectric region being separated from the first dielectric region by a substrate.
    Type: Application
    Filed: October 8, 2021
    Publication date: November 10, 2022
    Inventors: I-Ming CHANG, Jung-Hung CHANG, Chung-Liang CHENG, Hsiang-Pi CHANG, Yao-Sheng HUANG, Huang-Lin CHAO
  • Publication number: 20220310846
    Abstract: A semiconductor device includes a semiconductor substrate, an interfacial layer formed on the semiconductor substrate, a high-k dielectric layer formed on the interfacial layer, and a conductive gate electrode layer formed on the high-k dielectric layer. At least one of the high-k dielectric layer and the interfacial layer is doped with: a first dopant species, a second dopant species, and a third dopant species. The first dopant species and the second dopant species form a plurality of first dipole elements having a first polarity. The third dopant species forms a plurality of second dipole elements having a second polarity, and the first and second polarities are opposite.
    Type: Application
    Filed: November 29, 2021
    Publication date: September 29, 2022
    Inventors: Hsiang-Pi Chang, Yen-Tien Tung, Dawei Heh, Chung-Liang Cheng, I-Ming Chang, Yao-Sheng Huang, Tzer-Min Shen, Huang-Lin Chao
  • Publication number: 20210296507
    Abstract: A method includes following steps. A silicon germanium layer is formed on a substrate. A surface layer of the silicon germanium layer is oxidized to form an interfacial layer comprising silicon oxide and germanium oxide. The interfacial layer is nitridated. A metal gate structure is formed over the nitridated interfacial layer.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu CHANG, Hsiang-Pi CHANG, Zi-Wei FANG