Patents by Inventor HSIANG-YU LEE

HSIANG-YU LEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10013596
    Abstract: A fingerprint recognition apparatus includes an electrode-and-wiring substrate having two main surfaces opposite to each other, where one main surface is in proximity to user finger and the electrode-and-wiring substrate has a plurality of sensing electrodes on the other main surface. The fingerprint recognition apparatus further includes an integrated circuit (IC) chip having a fingerprint sensing circuit and a plurality of metal bumps. At least part of the metal bumps are electrically connected to the fingerprint sensing circuit and corresponding sensing electrodes on the electrode-and-wiring substrate, whereby the fingerprint sensing circuit is electrically connected to the sensing electrodes.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: July 3, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Patent number: 10013112
    Abstract: In an in-cell touch display panel, a TFT layer includes plural thin film transistors, plural data lines and plural scan lines. A common voltage electrode layer includes plural common voltage electrodes capable of being switched to serve as touch sensing electrodes, each touch sensing electrode including a common voltage electrode. A metal mesh shielding layer is disposed between the TFT layer and the common voltage electrode layer. The metal mesh shielding layer includes plural metal lines arranged in rows and columns. The metal lines are disposed at locations corresponding to those of the data lines and scan lines, and are formed into a shielding area and plural touch electrode traces. In the shielding area, the metal mesh lines are electrically connected together, and each touch electrode trace is connected to a touch sensing electrode, while the shielding area is not electrically connected to the touch electrode traces.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 3, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Patent number: 9996722
    Abstract: A biometric feature identification device includes a substrate, an electrode layer, and a switch and trace layer. The electrode layer is arranged at one side of the substrate and has a plurality of electrodes. The switch and trace layer has a plurality of switches and a plurality of traces. The switches are provided to divide the plurality of electrodes sequentially or dynamically into at least one sensing electrode group and a plurality of deflection electrode groups corresponding thereto. Each sensing electrode group corresponds to at least two deflection electrode groups. Each sensing electrode group has at least one electrode for sensing. Each deflection electrode group has a plurality of electrodes for deflection.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: June 12, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Patent number: 9984276
    Abstract: A group-verification fingerprint identifying method includes: simultaneously receiving fingerprint input operations from multiple users via a multi-finger fingerprint sensor of a fingerprint identifying apparatus for multiple fingers; generating a fingerprint combination corresponding to the fingerprint input operations; retrieving a registered fingerprints combination; generating a comparison result via comparing the fingerprints combination with the registered fingerprint combination. A more complicated verification mechanism can be provided to enhance security of identification via using group-verification and fingerprint identification.
    Type: Grant
    Filed: September 3, 2016
    Date of Patent: May 29, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Shang Chin, Hsiang-Yu Lee, Ping-Tsun Lin
  • Publication number: 20180143729
    Abstract: An OLED display panel includes a common electrode layer, a display pixel electrode and touch sensing electrode layer, an OLED layer, a lower substrate, a thin film transistor layer, and an encapsulation layer. The common electrode layer has plural through holes defined therein. The display pixel electrode and touch sensing electrode layer includes plural display pixel electrodes and plural touch sensing electrodes, wherein each touch sensing electrode has a mesh type pattern. The OLED layer is configured between the common electrode layer and the display pixel electrode and touch sensing electrode layer. The thin film transistor layer is disposed at one side of the lower substrate facing the OLED layer. The encapsulation layer is disposed at the other side of the common electrode layer facing the OLED layer. A first power circuit for the touch sensing electrodes is independent to a second power circuit for the OLED display panel.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 24, 2018
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Patent number: 9977526
    Abstract: A display device includes a TFT substrate layer, a display material layer, a common electrode layer, a touch electrode layer, a display control circuit and a touch control circuit. The common electrode layer has a common electrode. The touch electrode layer includes plural first touch electrodes and plural second touch electrodes. The display control circuit includes a display power. The touch control circuit includes a touch power independent to the display power. The touch control circuit sequentially or randomly couples a touch stimulation signal to a selected first touch electrode or receives a touch sense signal from a selected second touch electrode. The touch sense signal is driven and coupled to the common electrode layer or a node of the display control circuit for performing a touch detection operation in which there is no current loop between the display control circuit and the touch control circuit.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: May 22, 2018
    Assignee: SUPER-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin, Chia-Hsun Tu
  • Patent number: 9977272
    Abstract: An in-cell touch display panel structure includes upper and lower substrates configured therebetween a display material layer, a black matrix sensing electrode layer, a sensing electrode trace layer, and an insulation layer. The black matrix sensing electrode layer is composed of a plurality of opaque conductor lines, which are patterned to form a plurality of sensing electrodes. The sensing electrode trace layer is composed of a plurality of trace conductor lines. The insulation layer is disposed between the sensing electrode trace layer and the black matrix sensing electrode layer. Each sensing electrode is connected with at least one trace conductor line. The plurality of trace conductor lines are disposed at positions corresponding to those of the plurality of opaque conductor lines of the black matrix sensing electrode layer.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: May 22, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventor: Hsiang-Yu Lee
  • Patent number: 9971924
    Abstract: A two-substrate fingerprint recognition device includes a first substrate and a second substrate. A plurality of electrodes, a plurality of connection pads and a plurality of connection traces are deployed on one surface of the first substrate. A plurality of conductive connection pads, a plurality of connection pads, a plurality of connection traces and a plurality of switch circuits are deployed on one surface of the second substrate that faces the first substrate. At least one electrode connection pad of the second substrate is electrically connected to a corresponding electrode of the first substrate.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: May 15, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Patent number: 9965119
    Abstract: A high-sensitivity self-capacitance in-cell touch display panel device includes a sensing electrode layer having plural sensing electrodes, a display control circuit, a touch sensing control circuit, and an amplifier with gain greater than zero. The display control circuit is powered by a first power source and connected to a first ground. The touch sensing control circuit is coupled to the sensing electrodes for performing a touch sensing. The touch sensing control circuit is powered by a second power source and connected to a second ground, wherein the first power source and the first ground are different from the second power source and the second ground. The amplifier is connected to the touch sensing control circuit and a common voltage layer. The touch sensing control circuit applies a sensing signal sensed by at least one sensing electrode to the amplifier for being amplified and applied to the common voltage layer.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: May 8, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Patent number: 9953201
    Abstract: A biometric recognition apparatus with deflection electrode includes a substrate, a multi-function electrode layer including a plurality of sensing electrodes, a plurality of deflection electrodes and at least one suppressing electrode. Each of the sensing electrodes is at least partially surrounded by a corresponding deflection electrode and each of the deflection electrodes is at least partially surrounded by the suppressing electrode. The biometric recognition apparatus further includes a switching circuit layer having a plurality of selection switches and conductive wires, at least a part of the selection switches and the conductive wires are electrically connected to the sensing electrodes. By above arrangement of the sensing electrodes, the deflection electrodes and the suppressing electrode, the sensing sensibility and signal to noise ratio can be enhanced, thus increasing the sensing distance between sensing electrode and user finger.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: April 24, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Publication number: 20180095561
    Abstract: A self-capacitance input device with hovering touch includes a sensing electrode layer, a reflection and deflection electrode layer, an insulation layer, and an amplifier with a gain greater than zero. The sensing electrode layer has a plurality of sensing electrodes on one side for sensing a touch or approach of an external object. The reflection and deflection electrode layer is disposed on the other side of the sensing electrode layer and has at least one reflection and deflection electrode. The insulation layer is disposed between the sensing electrode layer and the reflection and deflection electrode layer. The amplifier has an output coupled to the reflection and deflection electrode layer.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Patent number: 9927899
    Abstract: A high-accuracy flat touch display panel structure includes an upper substrate, a lower substrate, a liquid crystal layer configured between the upper and lower substrates, a thin film transistor and wiring layer, and a sensing electrode layer. The thin film transistor and wiring layer is disposed at one side of the lower substrate facing the liquid crystal layer, and includes a plurality of gate lines, a plurality of source lines, and a plurality of wirings. The sensing electrode layer is disposed at one side of the thin film transistor and wiring layer facing the liquid crystal layer, and has a plurality of sensing conductor lines. The plurality of sensing conductor lines are disposed corresponding to positions of the plurality of gate lines and the plurality of source lines.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 27, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventor: Hsiang-Yu Lee
  • Publication number: 20180074629
    Abstract: A touch sensing substrate includes a substrate, plural thin film transistor switch sets, plural touch sensing electrodes, plural touch sensing signal wires, plural touch sensing control wires, plural display drive thin film transistors, and plural pixel electrodes. Each thin film transistor switch set is arranged on one side of a substrate. Each touch sensing electrode corresponds to a thin film transistor switch set connected to the touch sensing electrode corresponding thereto. Each touch sensing signal wire is connected to at least two thin film transistor switch sets. Each touch sensing control wire is connected to the thin film transistor switch sets corresponding to at least two touch sensing electrodes. By the touch sensing control wires, the touch sensing signal wires, and the corresponding thin film transistor switch sets, a touch sensing signal from the touch sensing electrodes can be applied to a touch control circuit with less signal wires.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 15, 2018
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Patent number: 9892305
    Abstract: A biometric recognition apparatus includes a substrate, a plurality of sensing electrodes, a plurality of traces, at least one shielding electrode, at least one insulating layer, and at least one fingerprint recognition IC. The sensing electrodes are arranged on one side of the substrate with at least one row to detect fingerprint information. Each trace is electrically coupled to at least one sensing electrode. The shielding electrodes are arranged above the traces to avoid the interference from fingers or external noise. The insulating layer is arranged between the shielding electrodes and the traces. The fingerprint recognition IC is connected to the corresponding sensing electrodes to detect the electric charge variations at the sensing electrodes.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 13, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Publication number: 20180025209
    Abstract: A fingerprint identification apparatus includes a substrate, a second electrode layer, and a first electrode layer. The first electrode layer includes parallel first electrodes, and at least parts of the first electrodes have openings or dents. The second electrode layer includes parallel second electrodes and the second electrodes cross with the first electrodes on the substrate, where the openings or the dents are defined at the cross points from projected view. The second electrode is applied with transmitting signal and the corresponding electric field lines are received by the first electrode. The electric field lines detouring the edges of the first electrodes, or detouring the openings (or the dents) have induction with the finger close to or touching the first electrodes. The number of the effective electric field lines and the effective mutual capacitance changes can be increased to enhance the fingerprint sensing accuracy.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 25, 2018
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Publication number: 20180025203
    Abstract: An interference-free fingerprint identification device includes a TFT substrate, a TFT layer having plural TFTs, a sensing electrode layer having plural fingerprint sensing electrodes, a gate line layer having plural gate lines, a data line layer having plural data lines, and a first shielding layer. Each fingerprint sensing electrode corresponds to a plurality of the TFTs, and is connected to sources or drains of at least two corresponding TFTs. At least two gate lines are electrically connected to gates of a plurality of the TFTs corresponding to a fingerprint sensing electrode. Each data line is electrically connected to a source or drain of a TFT in a plurality of the TFTs corresponding to a fingerprint sensing electrode. The first shielding layer is electrically connected to a source or drain of a TFT in a plurality of the TFTs corresponding to each fingerprint sensing electrode.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Patent number: 9870110
    Abstract: A self-capacitance input device with hovering touch includes a sensing electrode layer, a reflection and deflection electrode layer, an insulation layer, and an amplifier with a gain greater than zero. The sensing electrode layer has a plurality of sensing electrodes on one side for sensing a touch or approach of an external object. The reflection and deflection electrode layer is disposed on the other side of the sensing electrode layer and has at least one reflection and deflection electrode. The insulation layer is disposed between the sensing electrode layer and the reflection and deflection electrode layer. The amplifier has an output coupled to the reflection and deflection electrode layer.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 16, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Publication number: 20180011577
    Abstract: An in-cell touch display device includes: a lower substrate a thin film transistor layer, a common electrode layer, an electrode integration layer and a display material layer. The thin film transistor layer is arranged on the lower substrate, and includes a plurality of thin film transistors. The common electrode layer is arranged on the thin film transistor layer, and includes a plurality of common electrodes connected to each other. The electrode integration layer is arranged on the common electrode layer, and includes a plurality of pixel electrodes and a plurality of touch sense electrodes each corresponding to a group of the pixel electrodes. Each touch sense electrode is formed by a plurality of transparent mesh-like touch electrodes surrounding the corresponding pixel electrodes. The display material layer is arranged on the electrode integration layer, and includes a display material.
    Type: Application
    Filed: June 26, 2017
    Publication date: January 11, 2018
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Patent number: 9857903
    Abstract: An in-cell touch display structure includes: an upper substrate, a lower substrate, a liquid crystal layer configured between the upper and lower substrates; a black matrix layer, and a thin film transistor and sensing electrode layer. The thin film transistor and sensing electrode layer includes a gate line sub-layer having a plurality of gate lines and a plurality of connection segments separated by the gate lines, and a source line sub-layer having a plurality of source lines and a plurality of sensing conductor segments separated by the source lines, wherein part of the sensing conductor segments and part of the connection segments are electrically connected together to form a plurality of sensing conductor blocks.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 2, 2018
    Assignee: SUPERC-TOUCH CORPORATION
    Inventor: Hsiang-Yu Lee
  • Publication number: 20170372119
    Abstract: A fingerprint identification apparatus includes a fingerprint identification IC chip, a polymer film substrate and a decorative layer. The fingerprint identification IC chip comprises a plurality of metal bumps arranged on one side of the fingerprint identification IC chip. The polymer film substrate comprises a plurality of conductive pads and arranged on one side of the fingerprint identification IC chip with the metal bumps. At least part of the conductive pads is corresponding to and electrically connected to the metal bumps. The decorative layer is arranged on one side of the polymer film substrate opposite to the fingerprint identification IC chip.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 28, 2017
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN