Patents by Inventor Hsiang Yuan Huang

Hsiang Yuan Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7989213
    Abstract: Disclosed are Surface Enhanced Resonance Raman Spectroscopy (SERRS) probes and their use in detection methods for bioassays. Further disclosed is signal optimization of surface enhanced resonance Raman probes achieved by chemical modification of the probes. Also disclosed are methods for increasing the Raman cross-section by varying the chemical composition of a linker group linking a signal molecule to a nanoparticle surface. The signal molecules, such as dyes, may be modified with a linker group designed to both enhance the SERRS signal and to couple the signal molecule to the nanoparticle surface.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: August 2, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Philip Leslie Drake, Hsiang-Yuan Huang
  • Patent number: 7868145
    Abstract: A magnetic particle and fabrication method thereof. The magnetic particle comprises a polymer core, a magnetic material layer covering the polymer core, and a silicon containing layer covering the magnetic material layer. In addition, the magnetic particle may further comprise a coupling agent on the silicon containing layer, and an active molecule connected to the coupling agent. The magnetic particles provide controllable size, uniform diameter distribution, high magnetization, improved storage stability, and modified surface for targeting biomolecules for biomaterial separation and environmental analysis.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: January 11, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Kun Chan Wu, Hui-Ju Cho, Pei-Shin Jiang, Hsiang Yuan Huang, Wen-Hsun Kuo, Chi-Min Chau, Chih Hsien Su, Kun Feng Lee
  • Publication number: 20100255599
    Abstract: Disclosed are Surface Enhanced Resonance Raman Spectroscopy (SERRS) probes and their use in detection methods for bioassays. Further disclosed is signal optimization of surface enhanced resonance Raman probes achieved by chemical modification of the probes. Also disclosed are methods for increasing the Raman cross-section by varying the chemical composition of a linker group linking a signal molecule to a nanoparticle surface. The signal molecules, such as dyes, may be modified with a linker group designed to both enhance the SERRS signal and to couple the signal molecule to the nanoparticle surface.
    Type: Application
    Filed: June 16, 2009
    Publication date: October 7, 2010
    Applicant: Industrial Technology Research Institute
    Inventors: Philip Leslie Drake, Hsiang-Yuan Huang
  • Publication number: 20090017518
    Abstract: A magnetic particle and fabrication method thereof. The magnetic particle comprises a polymer core, a magnetic material layer covering the polymer core, and a silicon containing layer covering the magnetic material layer. In addition, the magnetic particle may further comprise a coupling agent on the silicon containing layer, and an active molecule connected to the coupling agent. The magnetic particles provide controllable size, uniform diameter distribution, high magnetization, improved storage stability, and modified surface for targeting biomolecules for biomaterial separation and environmental analysis.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 15, 2009
    Inventors: Kun Chan Wu, Hui-Ju Cho, Pei-Shin Jiang, Hsiang Yuan Huang, Wen-Hsun Kuo, Chi-Min Chau
  • Publication number: 20080020471
    Abstract: A blood sugar detecting system using emission quantum dots is provided. A non-cyclodextran carbohydrate-containing molecule and a glucose-recognizing molecule respectively bind to an emission quantum dot and a light-absorbing molecule to form the blood sugar measuring system. When the non-cyclodextran carbohydrate-containing molecule and the glucose-recognizing molecule bind together to bring the emission quantum dot very close to the light-absorbing molecule, a fluorescence resonance energy transfer effect is happened between them. Glucose can compete with the non-cyclodextran carbohydrate-containing molecule for the binding site of the glucose-recognizing molecule to detect glucose concentration variation.
    Type: Application
    Filed: February 7, 2007
    Publication date: January 24, 2008
    Inventors: Chi-Min Chau, Chih-Hsien Su, Hsiang-Yuan Huang, Yuh-Jiuan Lin