Patents by Inventor Hsiao-Lin Yang

Hsiao-Lin Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145498
    Abstract: Some embodiments relate to an integrated chip including a substrate having a first side and a second side opposite the first side. The integrated chip further includes a first photodetector positioned in a first pixel region within the substrate. A floating diffusion region with a first doping concentration of a first polarity is positioned on the first side of the substrate in the first pixel region. A first body contact region with a second doping concentration of a second polarity different from the first polarity is positioned on the second side of the substrate in the first pixel region.
    Type: Application
    Filed: January 4, 2023
    Publication date: May 2, 2024
    Inventors: Hao-Lin Yang, Fu-Sheng Kuo, Ching-Chun Wang, Hsiao-Hui Tseng, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung
  • Publication number: 20240128216
    Abstract: A bonding structure that may be used to form 3D-IC devices is formed using first oblong bonding pads on a first substrate and second oblong bonding pads one a second substrate. The first and second oblong bonding pads are laid crosswise, and the bond is formed. Viewed in a first cross-section, the first bonding pad is wider than the second bonding pad. Viewed in a second cross-section at a right angle to the first, the second bonding pad is wider than the first bonding pad. Making the bonding pads oblong and angling them relative to one another reduces variations in bonding area due to shifts in alignment between the first substrate and the second substrate. The oblong shape in a suitable orientation may also be used to reduce capacitive coupling between one of the bonding pads and nearby wires.
    Type: Application
    Filed: January 4, 2023
    Publication date: April 18, 2024
    Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Ching-Chun Wang, Hsiao-Hui Tseng, Chen-Jong Wang, Dun-Nian Yaung
  • Publication number: 20240088023
    Abstract: An interconnect structure includes a dielectric layer, a first conductive feature, a hard mask layer, a conductive layer, and a capping layer. The first conductive feature is disposed in the dielectric layer. The hard mask layer is disposed on the first conductive feature. The conductive layer includes a first portion and a second portion, the first portion of the conductive layer is disposed over at least a first portion of the hard mask layer, and the second portion of the conductive layer is disposed over the dielectric layer. The hard mask layer and the conductive layer are formed by different materials. The capping layer is disposed on the dielectric layer and the conductive layer.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Shao-Kuan LEE, Kuang-Wei YANG, Cherng-Shiaw TSAI, Cheng-Chin LEE, Ting-Ya LO, Chi-Lin TENG, Hsin-Yen HUANG, Hsiao-Kang CHANG, Shau-Lin SHUE
  • Patent number: 10381454
    Abstract: Embodiments of the disclosure generally provide methods of forming a capacitor with high capacitance and low leakage as well as a good interface control for thin film transistor (TFT) applications. In one embodiment, a thin film transistor structure includes a capacitor formed in a thin film transistor device. The capacitor further includes a common electrode disposed on a substrate, a dielectric layer formed on the common electrode and a pixel electrode formed on the dielectric layer. An interface protection layer formed between the common electrode and the dielectric layer, or between the dielectric layer and the pixel electrode. A gate insulating layer fabricated by a high-k material may also be utilized in the thin film transistor structure.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: August 13, 2019
    Assignee: PATTERSON + SHERIDAN LLP
    Inventors: Xuena Zhang, Dong-Kil Yim, Wenqing Dai, Harvey You, Tae Kyung Won, Hsiao-Lin Yang, Wan-Yu Lin, Yun-chu Tsai
  • Publication number: 20180218905
    Abstract: A method and apparatus for equalized plasma coupling is provided herein. Discontinuity marks, also known as golf tee mura, are eliminated or minimized by biasing or grounding lift pins disposed in openings towards the center of a substrate support. To prevent shorting between a biased or grounded lift pin and the substrate support, lift pins are electrically isolated from the substrate support. The electrical isolation of the lift pin includes coating the lift pins with an electrically insulating material or lining a respective substrate support opening with an electrically insulating material.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 2, 2018
    Inventors: Beom Soo PARK, Dongsuh LEE, Hsiao-Lin YANG, Fu-Ting CHANG, Hsiang AN, Tsung-Yao SU
  • Publication number: 20170229490
    Abstract: Embodiments of the disclosure generally provide methods of forming a capacitor with high capacitance and low leakage as well as a good interface control for thin film transistor (TFT) applications. In one embodiment, a thin film transistor structure includes a capacitor formed in a thin film transistor device. The capacitor further includes a common electrode disposed on a substrate, a dielectric layer formed on the common electrode and a pixel electrode formed on the dielectric layer. An interface protection layer formed between the common electrode and the dielectric layer, or between the dielectric layer and the pixel electrode. A gate insulating layer fabricated by a high-k material may also be utilized in the thin film transistor structure.
    Type: Application
    Filed: January 20, 2017
    Publication date: August 10, 2017
    Inventors: Xuena ZHANG, Dong-Kil YIM, Wenqing DAI, Harvey YOU, Tae Kyung WON, Hsiao-Lin YANG, Wan-Yu LIN, Yun-chu TSAI
  • Publication number: 20130071581
    Abstract: The present invention generally relates to a capacitively coupled plasma (CCP) processing chamber, a manner to reduce or prevent stray capacitance, and a manner to measure plasma conditions within the processing chamber. As CCP processing chambers increase in size, there is a tendency for stray capacitance to negatively impact the process. Additionally, RF ground straps may break. By increasing the spacing between the chamber backing plate and the chamber wall, stray capacitance may be minimized. Additionally, the plasma may be monitored by measuring the conditions of the plasma at the backing plate rather than at the match network. In so measuring, the plasma harmonic data may be analyzed to reveal plasma processing conditions within the chamber.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 21, 2013
    Inventors: Jonghoon Baek, Sam H. Kim, Beom Soo Park, John M. White, Shinichi Kunita, Hsiao-Lin Yang