Patents by Inventor HSIEN CHING HUANG

HSIEN CHING HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978740
    Abstract: A layer stack including a first bonding dielectric material layer, a dielectric metal oxide layer, and a second bonding dielectric material layer is formed over a top surface of a substrate including a substrate semiconductor layer. A conductive material layer is formed by depositing a conductive material over the second bonding dielectric material layer. The substrate semiconductor layer is thinned by removing portions of the substrate semiconductor layer that are distal from the layer stack, whereby a remaining portion of the substrate semiconductor layer includes a top semiconductor layer. A semiconductor device may be formed on the top semiconductor layer.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Harry-Hak-Lay Chuang, Kuo-Ching Huang, Wei-Cheng Wu, Hsin Fu Lin, Henry Wang, Chien Hung Liu, Tsung-Hao Yeh, Hsien Jung Chen
  • Publication number: 20240136346
    Abstract: A semiconductor die package includes an inductor-capacitor (LC) semiconductor die that is directly bonded with a logic semiconductor die. The LC semiconductor die includes inductors and capacitors that are integrated into a single die. The inductors and capacitors of the LC semiconductor die may be electrically connected with transistors and other logic components on the logic semiconductor die to form a voltage regulator circuit of the semiconductor die package. The integration of passive components (e.g., the inductors and capacitors) of the voltage regulator circuit into a single semiconductor die reduces signal propagation distances in the voltage regulator circuit, which may increase the operating efficiency of the voltage regulator circuit, may reduce the formfactor for the semiconductor die package, may reduce parasitic capacitance and/or may reduce parasitic inductance in the voltage regulator circuit (thereby improving the performance of the voltage regulator circuit), among other examples.
    Type: Application
    Filed: April 17, 2023
    Publication date: April 25, 2024
    Inventors: Chien Hung LIU, Yu-Sheng CHEN, Yi Ching ONG, Hsien Jung CHEN, Kuen-Yi CHEN, Kuo-Ching HUANG, Harry-HakLay CHUANG, Wei-Cheng WU, Yu-Jen WANG
  • Patent number: 11967546
    Abstract: A semiconductor structure includes a first interposer; a second interposer laterally adjacent to the first interposer, where the second interposer is spaced apart from the first interposer; and a first die attached to a first side of the first interposer and attached to a first side of the second interposer, where the first side of the first interposer and the first side of the second interposer face the first die.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shang-Yun Hou, Hsien-Pin Hu, Sao-Ling Chiu, Wen-Hsin Wei, Ping-Kang Huang, Chih-Ta Shen, Szu-Wei Lu, Ying-Ching Shih, Wen-Chih Chiou, Chi-Hsi Wu, Chen-Hua Yu
  • Publication number: 20240105644
    Abstract: A semiconductor die package includes a high dielectric constant (high-k) dielectric layer over a device region of a first semiconductor die that is bonded with a second semiconductor die in a wafer on wafer (WoW) configuration. A through silicon via (TSV) structure may be formed through the device region. The high-k dielectric layer has an intrinsic negative charge polarity that provides a coupling voltage to modify the electric potential in the device region. In particular, the electron carriers in high-k dielectric layer attracts hole charge carriers in device region, which suppresses trap-assist tunnels that result from surface defects formed during etching of the recess for the TSV structure. Accordingly, the high-k dielectric layer described herein reduces the likelihood of (and/or the magnitude of) current leakage in semiconductor devices that are included in the device region of the first semiconductor die.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 28, 2024
    Inventors: Tsung-Hao YEH, Chien Hung LIU, Hsien Jung CHEN, Hsin Heng WANG, Kuo-Ching HUANG
  • Publication number: 20240096705
    Abstract: A semiconductor device includes a plurality of channel layers vertically separated from one another. The semiconductor device also includes an active gate structure comprising a lower portion and an upper portion. The lower portion wraps around each of the plurality of channel layers. The semiconductor device further includes a gate spacer extending along a sidewall of the upper portion of the active gate structure. The gate spacer has a bottom surface. Moreover, a dummy gate dielectric layer is disposed between the gate spacer and a topmost channel layer of plurality of channel layers. The dummy gate dielectric layer is in contact with a top surface of the topmost channel layer, the bottom surface of the gate spacer, and the sidewall of the gate structure.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Yu Kao, Chen-Yui Yang, Hsien-Chung Huang, Chao-Cheng Chen, Shih-Yao Lin, Chih-Chung Chiu, Chih-Han Lin, Chen-Ping Chen, Ke-Chia Tseng, Ming-Ching Chang
  • Publication number: 20240071849
    Abstract: A semiconductor package including one or more dam structures and the method of forming are provided. A semiconductor package may include an interposer, a semiconductor die bonded to a first side of the interposer, an encapsulant on the first side of the interposer encircling the semiconductor die, a substrate bonded to the a second side of the interposer, an underfill between the interposer and the substrate, and one or more of dam structures on the substrate. The one or more dam structures may be disposed adjacent respective corners of the interposer and may be in direct contact with the underfill. The coefficient of thermal expansion of the one or more of dam structures may be smaller than the coefficient of thermal expansion of the underfill.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 29, 2024
    Inventors: Jian-You Chen, Kuan-Yu Huang, Li-Chung Kuo, Chen-Hsuan Tsai, Kung-Chen Yeh, Hsien-Ju Tsou, Ying-Ching Shih, Szu-Wei Lu
  • Publication number: 20230182341
    Abstract: A water jet splitting machine for waste tires includes a feeding device, a water jet splitting chamber, a waste tire controlling device, a water jet device, and a discharging device. The water jet splitting chamber is disposed beside the feeding device. The waste tire controlling device is disposed on a top of the water jet splitting chamber and has a central line and a claw assembly. The claw assembly is disposed in the water jet splitting chamber and has at least three claw mechanisms. Each one of the at least three claw mechanisms has a claw capable of moving away from the central line along a radial direction. The water jet device is disposed beside the claw assembly of the waste tire controlling device and has a water jet seat having at least one water jet head. The discharging device is disposed beside the water jet splitting chamber.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 15, 2023
    Inventors: HSIEN CHING HUANG, YUNG CHUAN CHEN, CHEN CHENG HUANG